Industrialization and Current Field Experience of Additively Manufactured Gas Turbine components
Dr. Vladimir Navrotsky CTO, Senior Principle Key Expert, Siemens, October 11, 2018
What is additive manufacturing and how is it different from conventional production?

Product transformation
- Shift from conventional design to innovative DFAM

Conventional production
- Multiple components/part
- Long lead times for design & prototyping
- Design limited by mfg process, e.g. casting

Reimagine products
- Reduce weight, material
- Scan-to-product
- Expand performance
- Accelerate innovation cycles
- Freedom of design is no longer restricted by design rules of conventional manufacturing

Rethink business
- Individualization, personalization
- Zero inventory – on demand printing
- Design anywhere. Print anywhere.
- Accelerate innovation

Reinvent manufacturing
- Eliminate molding/castings/tooling
- Eliminate/simplify assembly process
- Reduce supply chains
- Affordable low volume production

Manufacturing transformation
- Shift from prototyping / experimentation to mainstream industrial production
Siemens was an early adopter of SLM AM technology and have successfully scaled its production.
Siemens is pursuing 2 major business objectives with driving AM into our core products and building an external service business.

1. Leading User of AM Technology to strengthen competitiveness

2. Leading AM Service Provider to leverage internal capabilities

Digital Factory

- Only Supplier of seamlessly integrated AM solution
- Software
- Control & Automation
- Part Manufacturing Platform (PMP)
Manufacturing Footprint expansion signed for FSP and MSL
Global footprint growth into North America

- Finspong
- Worcester
- Montreal
- Charlotte
- Berlin

- Various EOS units
- 1 x M290
- 1 x M400
- 1 x Trumpf

Production and development
Prototype and development
Planned prototype
Three main pillars when applying AM

Rapid Prototyping
Significant reduction of time to market

Rapid Manufacturing / Spare Parts on Demand
Completely new design only possible via SLM

Rapid Repair
10 times faster and easy upgrades
WE achieved a major BREAKTHROUGH … … first turbine blade is printed and tested in the engine

Approach
- Use SLM for rapid prototyping of blades
- Rainbow test in gas turbine for selection of best design
- Calibration of calculation tools and design methods
- Full scale engine test performed

Benefits
- Excellent tool for optimization of blade cooling designs
- Substantial lead time reduction for engine upgrades - 1st blade manufactured already 2 weeks after receipt of 3D model
- Minimized risk by verification of blade temperature prior to casting
Burner manufacturing by means of SLM for flexibility, shorter lead time and improved life time

Approach

- Manufacturing of SGT-700/SGT-800 burners by means of SLM
- Redesign of existing burners for SGT700/800 to utilize the design freedom offered by SLM
- Full scale engine test performed
- Commercial operation in 2018

Benefits

- Reduced lead time by 23 w
- Enabling customization for fuel flexibility
- Removal of TBC

Conventional

- 13 parts / 18 welds
- TBC on front
- 26w lead time

SLM burner

- 1 integrated part
- No TBC due
- 3w lead time
3D printing parts are already in use at Nuclear Power Plant Krško, Slovenia

First 3D printed water pump impeller is on successful commercial operation at nuclear power plant

Customers benefits:
• Obsolete parts can be re-produced
• Significant lead time reduction
• Parts on demand
AM technologies overview
Laser Cladding - Smart Repair

Rotor Repair
- Fully operational since 2016
- > 40 rotor repairs successfully performed
- Covering extended range of rotors (steam turbines, compressors, generators) & filler materials
- Repair time reduced by approx. 50%

Valve Repair
- Fast track repair for valve spindles & valve cages (lead time down to several days)
- Stellite & Hard surfacing of valve components (for new manufacturing)

Stator Repair
- Substitute repair method of sealing faces of guide blade carriers (earlier: weld in forged ring and final machining)
- For both cast iron & cast steel
- Repair time reduced by approx. 30%
Current field experience of AM manufactured & repaired components > 100 000 hours

Successful in commercial operation

Rapid Repair
- **Product**: SGT-700/800
- **Component**: Burner tip
- **Benefit**: 90% lead time reduction
- **Status**: In commercial application since 2013
 > 30 000 EOH

Rapid Manufacturing
- **Product**: SGT-700
- **Component**: Burner
- **Benefit**: Longer life
- **Status**: In commercial application since 2017
 > 8 000 EOH

Rapid Manufacturing
- **Product**: SGT-750
 - **Component**: Swirler
 - **Benefit**: Swirler can only be made via SLM
- **Status**: In commercial application since 2013
 > 30 000 EOH

Rapid Manufacturing
- **Product**: SGT-800
 - **Component**: Burner
 - **Benefit**: Longer life
 - **Status**: In commercial application since 2017
 > 8 000 EOH

Spare parts on demand
- **Product**: SGT-1000F
 - **Component**: Burner head
 - **Benefit**: Reduced lead time by up to 6 months
- **Status**: In commercial application since 2016
 > 10 000 EOH
AM Vision: "Autonomous", Closed Loop & Self Healing Processes, Gas Turbines Order Spare Parts by Themselves
Disclaimer

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as “expect,” “look forward to,” “anticipate” “intend,” “plan,” “believe,” “seek,” “estimate,” “will,” “project” or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens’ management, of which many are beyond Siemens’ control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in Siemens’ Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens neither intends, nor assumes any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.
Dr. Vladimir Navrotsky
Chief Technology Officer,
Senior Principle Key Expert,
Siemens Power Generation Service,
Slottsvaegen 1
612 83 Finspong, Sweden
Phone: +46 122 82610
Mobile: +46 70 202 43 09
E-mail:
vladimir.navrotsky@siemens.com