

Dispersoid-strengthened High Entropy Alloy (HEA) Coatings for Hydrogen Embrittlement Resistance Developed Via Thermal Spraying

Brian Pitt Excellence Award Competition

Mohammad Aatif Qazi Department of Mechanical Engineering University of Alberta

Supervisor: Dr. André McDonald

Date: July 08, 2025

Introduction

Hydrogen to Power 13% of Global Energy by 2050

"...according to the report "Net Zero by 2050: a Roadmap" for the Global Energy Sector, the use of H and H-based fuels is expected to grow sixfold from today's levels to meet 13 % of worldwide total final energy consumption in 2050..." (International Energy Agency (IEA))

Oil & Gas Equipment MRO Market to Hit \$17.9B

"...the global oil and gas equipment MRO market is estimated to reach \$13.8 billion in 2025, with a projected growth to \$17.9 billion by 2032..." (Metastat) "...turbine repairs alone cost the industry an estimated \$8 billion in 2019..." (Wood Mackenzie)

Erosive wear attack on choke valve (Tornton et al., 2022)

Hydrogen embrittlement mechanism

(Sun et al., 2024)

Material Solution

High Entropy Alloys (HEA)

- Equiatomic or near-equiatomic concentrations of five or more elements.
- High configurational entropy
- Form solid solution phases

Excellent thermal stability, outstanding mechanical properties, high hardness and wear resistance, exceptionally high-temperature strength, irradiation resistance and excellent corrosion and oxidation resistance.

Flame Spray Process

Flame spray HEA coatings

- High hardness (Kumar et al., 2025)
- High wear resistance (Kumar et al., 2025, Wear)

- Promising oxidation resistance (Yeh et al., 2004)
- Good corrosion resistance (Nair et al., 2022)

Motivation

- Flame sprayed AlCoCrFeMo HEA has shown excellent performance against wear, erosion, and chloride-induced corrosion (Nair et al., 2022).
- Zirconium (Zr) is a strategic additive : (Zhao et al., 2023)
 - forms hard Laves phases and $\rm ZrO_2$
 - ZrO₂ acts as a thermodynamically stable hydrogen barrier
 - facilitates hydride formation and hydrogen trapping

This study investigates how Zr addition can unlock new frontiers in flame sprayed HEA coating performance by integrating wear, corrosion, and hydrogen resistance into a single coating system.

• Development of AlCoCrFeMo- Zr_x (x = 0, 5, 10, 15 wt.%) coatings via flame spray process.

• Evaluation of mechanical performance under impact-dominated loading conditions.

• Assessment of corrosion behaviour in a chemically aggressive environment.

• Investigation of hydrogen embrittlement resistance using permeation-based testing.

Experimental Methods

Feedsctock Powder Phase Analysis

Sample Name	Wt. % Zr Addition
Base-HEA	0
HEA-5Zr	5
HEA-10Zr	10
HEA-15Zr	15

- BCC structure in Base-HEA
- Zr-induced HCP phase formation
- Dual-phase microstructure evolution

Morphology of Powder Feedstock

- Average particle size: 38-42 µm
- Improved homogeneity

.

Spherical/regular morphology

EDS Elemental Maps of As-mixed Powder Feedstock

Well-homogenized powder mixture after tumble mixing

Phase Analysis of As-sprayed Coatings

Phases	Base-HEA	HEA-5Zr	HEA-10Zr	HEA-15Zr
BCC	59 ± 3	46 ± 9	42 ± 8	34 ± 9
Intermetallic	34 ± 5	45 ± 7	44 ± 6	43 ± 7
FCC (ZrO ₂)	-	7 ± 3	11 ± 2	20 ± 3
Spinel Oxides	7 ± 4	2 ± 4	3 ± 2	3 ± 4

- BCC, IM, FCC ZrO₂, spinel oxides
- BCC phase decreases with increasing Zr
- ZrO₂ content increases significantly

UNIVERSITY OF ALBERTA

Microstructure of As-sprayed Coatings

HEA-5Zr

- Splat-based morphology
- Coating thickness ~450 μm
- Zr addition increases heterogeneity

HEA-10Zr

HEA-15Zr

EDS Elemental Maps of As-sprayed Coatings

Base-HEA

HEA-5Zr

HEA-10Zr

HEA-15Zr

Progressive formation of ZrO₂-rich regions

Microhardness Evaluation

- Hardness increases with Zr
- Solid solution strengthening

Adhesion Strength of As-sprayed Coatings

- Cohesive failure mode
- ZrO₂-induced brittleness
- Zr improves mechanical interlocking and densification

Solid Particle Erosion at 30° Impact Angle

Erosion resistance improved with Zr addition up to 10 wt.%.

Solid Particle Erosion at 90° Impact Angle

• Erosion resistance improved with Zr addition up to 10 wt.%.

Electrochemical Corrosion Performance

Composition	SS316L	Base-HEA	HEA-5Zr	HEA-10Zr	HEA-15Zr
I_{corr} (μ A/cm ²)	1.2201	0.549	0.684	0.411	0.053
$E_{corr}(\mathbf{V})$	-0.358	-0.405	-0.409	-0.388	-0.354
$E_o(\mathbf{V})$	-0.288	-0.407	-0.404	-0.396	-0.365
CR (mpy)	88.9 x 10 ⁻²	3.6 x 10 ⁻³	4.7 x 10 ⁻³	3.05 x 10 ⁻³	4.1 x 10 ⁻⁴

- Corrosion resistance improves with Zr
- Stable ZrO_2 and Al_2O_3 phases
- Base-HEA shows galvanic corrosion

Hydrogen Permeation Assessment

Composition	$D_{e\!f\!f}(10^{-7}~{ m cm^2/s})$	$N_t (10^{-4} \text{ mol/cm}^3)$	c_{app} (mol/cm ³)
SS316L	0.64	0.0000014	0.1917
HEA-15Zr	2.3	4.6	0.0077

- HEA-15Zr shows high trap density
- Low hydrogen solubility
- High *D*_{eff} reflects initial ingress

• ZrO₂ and laves phases act as effective

hydrogen barriers

• HEA-15Zr outperforms SS316L

Conclusions

- AICoCrFeMo-Zr_x coatings were successfully fabricated using flame spray deposition technique.
- Mechanical performance improved, with the HEA-15Zr exhibiting the highest microhardness and adhesion strength.
- HEA-10Zr is the most erosion-resistant composition, while HEA-15Zr, although harder, exhibited increased brittleness and susceptibility to impact-induced fracture.
- Zr addition enhanced corrosion resistance, with HEA-15Zr showing the lowest corrosion current density and passivation.
- HEA-15Zr is an effective hydrogen barrier, due to high trap density and low hydrogen solubility.

Acknowledgments & Contact

- I would like to thank:
 - Dr. André McDonald
 - AHTSTL members

aatif.gazi@ualberta.ca

https://www.linkedin.com/in/aatifqazi/

Advanced Heat Transfer and Surface Technologies Laboratory

Thank you!

Leading with Purpose.

