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Introduction

Hydrogen to Power 13% of Global Energy by 2050

“..according to the report “Net Zero by 2050: a Roadmap”
for the Global Energy Sector, the use of H and H-based fuels
is expected to grow sixfold from today’s levels to meet 13 %
of worldwide total final energy consumption in 2050.."

(Interational Energy Agency (IEA))

Oil & Gas Equipment MRO Market to Hit $17.9B

“..the global oil and gas equipment MRO market is
estimated to reach $13.8 billion in 2025, with a projected
growth to $17.9 billion by 2032..." (Metastat)

“.turbine repairs alone cost the industry an estimated $8

billionin 2019..." (Wood Mackenzie)
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Material Solution

High Entropy Alloys (HEA)

» Equiatomic or near-equiatomic

concentrations of five or more elements.

 High configurational entropy

« Form solid solution phases

Fracture toughness, K_(MPa.m'%)
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Excellent thermal stability, outstanding mechanical properties, high hardness and wear
resistance, exceptionally high-temperature strength, irradiation resistance and excellent

corrosion and oxidation resistance.
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Flame Spray Process
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Flame spray HEA coatings

» High hardness (kumaretal, 2025 * Promising oxidation resistance (vehetal., 2004)

« High wear resistance (kumar etal. 2025, Wear)  Good corrosion resistance (Nairetal, 2022)
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Motivation

* Flame sprayed AlCoCrFeMo HEA has shown excellent performance against wear, erosion,

and chloride-induced corrosion (nairetal.,, 2022).

« Zirconium (Zr) is a strategic additive : (zhao etal, 2023)
- forms hard Laves phases and ZrO,
- ZrO, acts as a thermodynamically stable hydrogen barrier

- facilitates hydride formation and hydrogen trapping

This study investigates how Zr addition can unlock new frontiers in flame sprayed HEA
coating performance by integrating wear, corrosion, and hydrogen resistance into a
single coating system.
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Objectives

« Development of AlCoCrFeMo-Zr, (x =0, 5, 10, 15 wt.%) coatings via flame spray process.

« Evaluation of mechanical performance under impact-dominated loading conditions.

« Assessment of corrosion behaviour in a chemically aggressive environment.

» Investigation of hydrogen embrittlement resistance using permeation-based testing.
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Experimental Methods

Feedstock Powder Preparation
Tumble Mixing Zr 5, 10, 15 wt.% to AlICoCrFeMo
Characterization of Powder using XRD, SEM and EDS

\ 4

Coating Fabrication
Flame Spraying on 316L SS Substrates
Characterization of Coating using XRD, SEM and EDS

[ Coating Performance Assessment ]
v v
Mechanical Tests Electrochemical Tests
Microhardness Testing Electrochemical Corrosion Testing
Coating Adhesion Testing Devanathan-Stachurski Hydrogen Permeation Test

Solid Particle Erosion Testing




Intensity (a.u.)

A UNIVERSITY
\ix/ OF ALBERTA

Feedsctock Powder Phase Analysis
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BCC structure in Base-HEA

Zr-induced HCP phase formation

Dual-phase microstructure evolution
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Morphology of Powder Feedstock

Average particle size: 38—42 ym

Improved homogeneity

Spherical/regular morphology

=% N

HEA-10Zr
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EDS Elemental Maps of As-mixed Powder Feedstock

Base-HEA HEA-5Zr

HEA-10Zr HEA-15Zr

Well-homogenized powder mixture after tumble mixing
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Phase Analysis of As-sprayed Coatings

BCC A FCC (ZrO,)
e IM ¥ Spinel Oxides

HEA-15Zr

HEA-10Zr

HEA-5Zr

Base-HEA

2 Theta (Degree)

80 90

Phases Base-HEA  HEA-5Zr HEA-10Zr  HEA-15Zr
BCC 59+3 469 42+ 8 34+9
Intermetallic 345 457 44+ 6 43 +7
FCC (ZrOy) 7+3 11+2 203
Spinel Oxides 7 =4 2+4 32 3+4

« BCC, IM, FCC ZrO,, spinel oxides

« BCC phase decreases with increasing Zr

« Zr0O, content increases significantly

11
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Microstructure of As-sprayed Coatings

« °* Splat-based morphology
.+ Coating thickness ~450 pm

» Zraddition increases heterogeneity

1 BCC Phase 1 Spinel Oxides

T FCC (ZrO,) Phase T Interlamellar cracks

{ Partially melted particles

HEA-10Zr 7 HEA-15Zr

12
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EDS Elemental Maps of As-sprayed Coatings

Base-HEA

HEA-10Zr HEA-15Zr

» Progressive formation of ZrO,-rich regions
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Microhardness Evaluation
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« Hardness increases with Zr

» Solid solution strengthening

14
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Adhesion Strength of As-sprayed Coatings
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Cohesive failure mode
Zr0,-induced brittleness

Zr improves mechanical interlocking and
densification
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Solid Particle Erosion at 30° Impact Angle
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» Erosion resistance improved with Zr addition up to 10 wt.%.
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Solid Particle Erosion at 90° Impact Angle
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» Erosion resistance improved with Zr addition up to 10 wt.%. 17
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Electrochemical Corrosion Performance

—— HEA-15Zr
1.5 - HEA-10Zr Composition  SS316L Base-HEA  HEA-5Zr HEA-10Zr  HEA-15Zr
| = HEA-SZr Low (nA/cm?) 12201 0.549 0.684 0.411 0.053
Base-HEA
- Eeon (V) 0358 -0.405 -0.409 -0.388 -0.354
E,(V) 0288 -0.407 -0.404 -0.39 -0.365
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Hydrogen Permeation Assessment

Composition D,z (1077 cm?*/s) N, (10 mol/cm?) Capp (mol/cm?)

SS316L 0.64 0.0000014 0.1917

HEA-15Zr 2.3 4.6 0.0077
« HEA-15Zr shows high trap density « Zr0, and laves phases act as effective
« Low hydrogen solubility hydrogen barriers

« High D, reflects initial ingress « HEA-15Zr outperforms SS316L

19
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Conclusions

AlCoCrFeMo-Zr, coatings were successfully fabricated using flame spray deposition

technique.

Mechanical performance improved, with the HEA-15Zr exhibiting the highest microhardness

and adhesion strength.

HEA-10Zr is the most erosion-resistant composition, while HEA-15Zr, although harder,

exhibited increased brittleness and susceptibility to impact-induced fracture.

Zr addition enhanced corrosion resistance, with HEA-15Zr showing the lowest corrosion

current density and passivation.

HEA-15Zr is an effective hydrogen barrier, due to high trap density and low hydrogen solubility.

20
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