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Introduction
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From: Methanol Institute. Renewable 
Methanol [1]

Fuel Characteristics
• Methanol as a fuel compared to methane is 

characterized by:

• wider flammability limit

• 2.5 times lower LHV (Lower Heating Value)

Previous studies

• Killingholme Power Station :

• Equipped with four Siemens STG5-2000E gas 
turbines

• Own by Uniper, operates on capacity market 
framework

Analysed Power Station

• Previous tests comparing liquid methanol (diffusion-based) to kerosene showed up to 80% 
NOx reduction (Clifford et al. [2]).



Methodology

Manual calculations
(Dual-Phase concept)

Combustion [RANS CFD Simulation 
- Flamelet Generated Manifold 

approach (FGM)] 

Fundamental fuel combustion 
properties (Chemkin)

Fuel placement and 
mixing (RANS CFD)

Fuel placement 
and mixing quality

Thermoacoustics, emissions, overheating, 
flashback, lean blow-out, and autoignition

Potential 
modifications

Chemical kinetic modelling

Literature survey

3



Dual-Phase Concept
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Hybrid Burner in SGT5-2000E:

• Can operate on both liquid and gaseous fuel

• Operations on methanol will require increase in injection nozzles

Use of liquid methanol (based on correlations from [4]): 

• Methanol vs Diesel:

• Methanol shows a 2.14× higher transfer number (indicating 
faster evaporation)

• Methanol firing required a 1.5× larger nozzle to match 
standard pressure loss, yet still produced a 2.62× smaller 
Sauter Mean Diameter (SMD)

Use of evaporated methanol:

• Reduce fuel consumption by 5-6%

• Improve mixing and further reduction in NOx emissions

From Klimke 

et. al [3]

Diffusion

Premix



Dual-Phase Concept

From Klimke 

et. al [3]
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Diffusion

Premix

Hybrid Burner in SGT5-2000E:

• Can operate on both liquid and gaseous fuel

• Operations on methanol will require increase in injection nozzles

Use of liquid methanol (based on correlations from [4]): 

• Methanol vs Diesel:

• Methanol shows a 2.14× higher transfer number (indicating 
faster evaporation)

• Methanol firing required a 1.5× larger nozzle to match 
standard pressure loss, yet still produced a 2.62× smaller 
Sauter Mean Diameter (SMD)

Use of evaporated methanol:

• Reduce fuel consumption by 5-6%

• Improve mixing and further reduction in NOx emissions



Chemical Kinetics
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Based on results obtained in Chemical Kinetics study:

• Utilized mechanism CRECK_2003_C1-C3_HT_NOX [5]

• Ethanol data taken from Caputo [6]

• Mean flame temperature 1773K based on Prade et al. [7]



Potential Modifications for CFD Simulation

Modifications - Main Information:

• Potential modifications in fuel injection vane can include:
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Non-uniformUniform

D/DS=1.44 D/DS=1.44 D/DS=1.44 D/DS=1.44 D/DS=1.44

D/DS

1.44
D/DS=1 D/DS=1.17 D/DS=1.37 D/DS=1.60 D/DS=1.87

K 
1.17

Burner Cross Section



CFD – Mixing Quality Study

𝛟𝐧𝐨𝐫𝐦 =
𝐀/𝐅𝐥𝐨𝐜𝐚𝐥

𝐀/𝐅𝐁𝐂
 

• A/FBC- boundary 
conditions air to fuel ratio 
by mass

• A/Flocal- local air to fuel 
ratio by mass

dP – pressure drop through 
the injection vane
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Reference Case dP=1.6dPref dP=1.6dPrefdP=4.9dPref

Methane at 452K dP=1.6dPref

UNMODIFIED UNIFORM NON-UNIFORM

Normalized Equivalence Ratio Contour (𝛟𝐧𝐨𝐫𝐦)



CFD – Combustion

𝐓𝐧𝐨𝐫𝐦 =
𝐓𝐥𝐨𝐜𝐚𝐥

𝐓𝐦𝐞𝐚𝐧 𝐟𝐥𝐚𝐦𝐞
 contour and Progress Variable Iso-Surface c=0.8

8

Reference 
Case

CO 16% ↑
NOX 92% ↓

CO 22% ↑
NOX 40% ↑

CO 28% ↑
NOX 86% ↓

UNMODIFIED UNIFORM NON-UNIFORM



Conclusions

Dual phase concept is likely to be viable and worth further analytical and experimental investigation 
based on presented results

Liquid and vapor methanol firing is possible for the analysed burner; however, it requires increased 
injector capacity

Due to waste heat recovery, evaporated methanol could potentially lower fuel consumption by 5-6%

Flashback risk increases with methanol

PSR (perfectly stirred reactor) analysis predicts a 10% reduction in NOx emissions for methanol 
compared to methane

Non-uniform injector diameter increase (K=1.17) reduces NOx emissions by 86% compared to methane 
and lowers flashback risk compared to uniform diameter increase in methanol-fired burner 
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Thank you. Questions?

This work has been supported by Uniper but the results, analysis, conclusions and views expressed 

in this presentation are those of the author and his research supervisors and do not necessarily 
reflect those of Uniper.
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Appendix



Further work

CFD Modelling Enhancements - to more accurately predict the flame front behaviour 
based on LES (Large Eddy Simulation) or utilizing Hybrid Methods like DES or SBES

Thermoacoustic Modelling and Analysis

Fuel System Design and Optimization

Performance Modelling of the Gas Turbine

Start-up Procedures Design for Methanol Firing

Further Experimental Work on Spray Characteristics
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Unmixedness Parameter



CFD – Mixing Quality Study (Unmixedness Parameter)

 𝑺𝑵=

σ 𝑪𝒊
𝟐𝑴𝒊

σ 𝑴𝒋
−

σ 𝑪𝒊𝑴𝒊
σ 𝑴𝒋

𝟐

𝟏
𝑨
𝑭

+ 𝟏
−

𝟏
𝑨
𝑭

+ 𝟏

𝟐

𝑆𝑁 - normalized unmixedness parameter

𝐶𝑖- cell mass fraction 

𝑀𝑖 - mass flow through the cell

𝐴

𝐹
 - air to fuel ratio by mass

From: Hornsby et. al [8] and Sun et. al [9]
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Location of “unmixedness” measuring planes



CFD – Mixing Quality Study (Unmixedness Parameter)

 𝑺𝑵=
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𝑆𝑁 - normalized unmixedness parameter

𝐶𝑖- cell mass fraction 

𝑀𝑖 - mass flow through the cell

𝐴

𝐹
 - air to fuel ratio by mass

From: Hornsby et. al [8] and Sun et. al [9]
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Reference Values For Power Generation Gas 
Turbine with DLN System

Increasing
unmixidness (SN)
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Chemical Kinetics – 
Autoignition Time Delay



Chemical Kinetic – Autoignition Time Delay

Market temperatures represents:
• Temperature 608K represents the compressor discharge temperature

• Temperature 1023K represents potential corner recirculation zones temperature where periodic flashes may lead to 
flashback [10]

• Temperature 1773K represents mean flame temperature [7]
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Methodology
(Extended)

Manual Calculations

Combustion (RANS CFD 
Simulation)

Fundamental fuel combustion 
properties (Chemkin)

Fuel placement and mixing
(RANS CFD)

Autoignition 
Delay Time

Laminar Flame 
Speed

Adiabatic Flame 
Temperature

Emission Perfectly 
Stirred Reactor

Fuel placement and 
Mixing quality

Lean blow-out
Flashback

Flashback
Autoignition

Emissions

Thermoacoustic
Emissions

Overheating
Flashback

Lean blow-out

Flamelet Generated 
Manifold approach (FGM)Potential 

modifications

Chemical kinetic Validation

Chemical kinetic Modelling

Turbulence model validation

Literature Survey

Flame position/shape/length
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Aims and Objectives

Aims
• Feasibility study of the usage of alcohols as potential "green" fuels in existing units.

• Identification of changes that can be implemented in the existing combustor.

Objectives
• Liquid firing investigation based on manual calculations.

• Make comparison between methane and methanol to assess the impact of switching 
fuel on combustion performance.

• Create chemical kinetic model to analyse parameters such as: flame temperature, 
laminar flame speed, autoignition time delay, and estimated NOx emissions.

• Create CFD model to explore: fuel mixing characteristics, flame front behaviour, 
emissions, and temperature distribution.
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Chemical Kinetics - Validation



Chemical Kinetic Mechanism Validation - Methanol
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Laminar Flame speed

Autoignition Time Delay



• Laminar Flame Speed
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Chemical Kinetic Mechanism Validation - Methane
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Laminar Flame speed

Autoignition Time Delay
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CFD – Solver Setings



CFD Solver Settings

Computational Domain And BOI Arrangement for Mixing

Boundary conditions for simulations:

• Air Inlet:

• Mass flow: 17.71 kg/s

• Turbulence intensity: 5%

• Temperature: 608K

• Fuel Main Inlet:

• Mass flow: 0.488 kg/s Methane, 1.220 kg/s Methanol

• Turbulent intensity: 10%

• Temperature: 293K Methane, 452K Methane/Methanol

• Fuel Pilot Inlet:

• Mass flow: 0.054 kg/s Methane, 0.136 kg/s Methanol

• Turbulent intensity: 5%

• Temperature: 293K Methane, 452K Methane/Methanol

• Outlet:

• Pressure outlet/Prevent reverse flow

• Turbulence model: Realizable k-epsilon 

• Operating pressure: 11.2 bar

• Up-wind Scheme: Second order up-wind

• Pressure velocity field coupling scheme for final results: SIMPLEC 
Type of elements:

• Polyhedral (Unstructural Mesh) – Polyhedral cells combine the accuracy of hexahedrons and the easy 
generation of tetrahedrons, enhancing mesh quality and stability [11]. They reduce numerical diffusion 
and improve solution accuracy with fewer cells due to better gradient approximation and reduced 
sensitivity to stretching [11].

[11] M. Sosnowski, J. Krzywański, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, in 
Proceedings of EFM17 – Experimental Fluid Mechanics 2017, EPJ Web Conf., Vol. 180 (2018), https://doi.org/10.1051/epjconf/201818002096 BOI Arrangement for Combustion 29

https://doi.org/10.1051/epjconf/201818002096
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CFD - Validation



Turbulence model selection – Validation Case

From [11]

From [12]

Case description

•For validation of turbulence model there has been done simulation that recreate conditions used in Galeazzo at el. [12].

The boundary conditions for experiment and simulation:

•Crossflow:

• Inlet Bulk velocity: 9.08 m/s

•Turbulence intensity: 1.5%

•Reynolds Number 62 400

• Jet: 

• Inlet Bulk velocity: 37.72m/s

•Turbulence intensity: 7%

•Reynolds Number: 19 200

•Mommentum ratio R: 4.15

[12] F. Galeazzo, G. Donnert, C. Cárdenas, J. Sedlmaier, P. Habisreuther, N. Zarzalis, C. Beck, W. Krebs, 
Computational modeling of turbulent mixing in a jet in crossflow, Int. J. Heat Fluid Flow, 41: 55–65 (2013), 
https://doi.org/10.1016/j.ijheatfluidflow.2013.03.012 
[13] A. Karagozian, The jet in crossflow, Phys. Fluids, 26(10): 101303 (2014), https://doi.org/10.1063/1.4895900
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Turbulence Model Validation

Normalized Velocity Profiles on Reference Lines From Experiment

Experimental results from [12]
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Turbulence Model Validation
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[12] F. Galeazzo, G. Donnert, C. Cárdenas, J. Sedlmaier, P. 
Habisreuther, N. Zarzalis, C. Beck, W. Krebs, Computational 
modeling of turbulent mixing in a jet in crossflow, Int. J. 
Heat Fluid Flow, 41: 55–65 (2013), 
https://doi.org/10.1016/j.ijheatfluidflow.2013.03.012 
[14] Dukkipati. R V. Numerical Methods Fundamentals. 

MERCURY LEARNING AND INFO; 2023. 

Experimental results from [12]

From [14] 33
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CFD - Verification



Mixing Verification

[15] G. Mori, S. Razore, M. Ubaldi, P. Zunino, Integrated experimental and numerical approach for fuel-air mixing prediction in a heavy-duty gas turbine 
LP burner, J. Eng. Gas Turbine Power, 123(4): 803–809 (2001), https://doi.org/10.1115/1.1378297

Average Normalized Local Fuel Concentration 

Experimental Results From [15]

Radial Concentration Distribution

Experimental Results From [13] Experiment CFD Results
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Combustion Approach Verification

Turbulent Schmidt Number and Prandtl Number: 0.7 and 0.85 
(Default Fluent Settings) [Ansys Fluent Theory Guide]

[15] Liang J, Jia W, Sun Y, Wang Q. Skeletal chemical kinetic mechanism generation for methanol combustion and systematic analysis on the ignition characteristics. Asia-Pacific Journal of Chemical Engineering. 2020 May 

25;15(3):e2434. Available from:  https://doi.org/10.1002/apj.2434

[16] Pichler C, Nilsson EJK. Reduced kinetic mechanism for methanol combustion in spark-ignition engines. Energy & Fuels. 2018 Dec 20;32(12):12805–12813. Available from: 

https://doi.org/10.1021/acs.energyfuels.8b02136 

[17] Tang W, Silva M, Hakimov K, Zhang X, Hlaing P, Cenker E, AlRamadan AS, Turner JWG, Farooq A, Im HG, Sarathy SM. Skeletal CH 3 OH/NO x kinetic model for simulating spark-ignition and turbulent jet ignition 

engines. ACS Omega. 2024 Mar 12;9(10):11255–11265. Available from: https://doi.org/10.1021/acsomega.3c06488

[18] Tang W, Silva M, Hakimov K, Zhang X, Hlaing P, Cenker E, AlRamadan AS, Turner JWG, Farooq A, Im HG, Sarathy SM. Skeletal CH 3 OH/NO x kinetic model for simulating spark-ignition and turbulent jet ignition engines. 

ACS Omega. 2024 Mar 12;9(10):11255–11265. Available from: https://doi.org/10.1021/acsomega.3c06488
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Boundary Conditions – Sensitivity Study for Mixing
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Overall Impact into Mixing Quality

The main difference based on this 
parameter is observed in uniform increase 
in nozzle diameter

Between both types of boundary 
conditions there can be observed some 
similarities in fuel placement study

Boundary conditions (a) seems to capture 
better the arrangement of the burner for 
different Siemens Gas Turbines
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• 𝑀𝑖 - mass flow through the cell
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- air to fuel ratio by mass
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