

Our Vision

We transfer groundbreaking research in additive manufacturing to industrial applications and accelerate the industry transition into green manufacturing

Our Mission

We are creating a toolbox towards first-time-right production and new applications fields in laser-based Additive Manufacturing

Our Focus

Laser- and powderbased processes

Plastics and metals

Material development/ process optimization

AM@LBAM

Innovative process strategies in PBF-LB/M

- Beam shaping and Scannerbased strategies
- Pulsed exposure

Applications of AM

- AM for high power e-drives
- Production of cooling channels with defined surfaces

Quality assurance in PBF-LB/P

- Process monitoring in PBF-LB/P
- Prediction of part properties using ML

Laser material interaction

- Linking absorption to process behavior
- Monitoring techniques like multi-spectral imaging
- Data fusion and digital twin

Binder Jetting

- · Process Monitoring
- Sustainability by recycling of powder from other AM processes

Agenda

- i. Introduction and Motivation
- ii. State of the Art
- iii. Beam Shaping @ TUM
- iv. Conclusion and Outlook

Introduction and Motivation

Highly dynamic and chaotic powder bed fusion process with spatter, denudation, and keyholing.

→ Insufficient reproducibility and productivity with state-of-the-art Gaussian beam in PBF-LB/M.

Introduction and Motivation

Pocket tools

Laser-based Powder Bed Fusion of Metals

One size fits it all

Research highlights @ LBAM

Enhanced process robustness

- Larger process window
 [Grünewald et al. 2021]
- Higher process robustness
 [Grünewald et al. 2025 (submitted)]
- Reduced spatter formation
 [Grünewald et al. 2023]

Process acceleration

- Productivity improvement [Grünewald et al. 2021]
- Increased build rate
 [Grünewald et al. 2024, Wudy et al. 2025 (accepted)]

Tailoring of microstructure-

 Dependence of beam profile [Mirzabeigi et al. 2024]

Alternative beam profiles offer enormous potential for tailoring energy input in laser-based powder bed fusion of metals

ETN project idea

- **Innovative process strategies:** Combining new beam shapes with monitoring systems to enable:
- Processing of new hard-to-weld materials
- Acceleration of the process (by a factor of min. 3) and reducing the costs per part
- Tailoring of the microstructure and properties

Laser Beam Shaping @ TUM

Spatial light modulator (SLM)

Change in wavefront due to local change in refractive index by tilting liquid crystals

Absorber Absorber Piezo

transducer

Acousto-optic deflector (AOD)

Ultra-fast deflection of the laser radiation by

Multi-core fiber

Change in relative intensity distribution via redistribution across fiber cross-section

•

InShaPe

Spatial light modulators – Principle

Beam shaping with SLM – Experiments

→ Significant increase in productivity up to a factor of 3 with computer-simulated beam shapes compared to the Gaussian reference

Laser Beam Shaping @ TUM

Spatial light modulator (SLM)

Change in wavefront due to local change in refractive index by tilting liquid crystals

Acousto-optic deflector (AOD)

Ultra-fast deflection of the laser radiation by frequency change of acoustic sound waves

Multi-core fiber

Change in relative intensity distribution via redistribution across fiber cross-section

Prof. Dr.-Ing. Katrin Wudy (TUM) | Professorship of Laser-based Additive Manufacturing

Experimental setup with extended exposure and monitoring options

Industrial setup with higher TRL coming in June

Multi-core fiber – Process window

Multi-core fiber – Production speed

Experimental setup with extended exposure and monitoring options

Multi-core fiber – Process stability and spatter detection

Multi-core fiber – Process stability and spatter detection

Grünewald, J., Reimann, J., & Wudy, K. (2023). Influence of ring-shaped beam profiles on spatter characteristics in laser-based powder bed fusion of metals. *Journal of Laser Applications*, 35(4).

Experimental setup with extended exposure and monitoring options

Multispectral Imaging – State of the art

Temperature Map under different beam shape

Experimental setup with extended exposure and monitoring options

Methodology – Integrating sphere measurement

Reflection monitoring & sensor fusion

The start of the sphere-based signal decrease coincides with the onset of vapor formation

Conclusion

LBAM is able to investigate the influence of new beam shapes on the process and process results

- From low TRL with infinite design space and extended monitoring capabilites
- > To high TRL with industrial conditions

Alternative beam shapes enable

- improved process stability
- tailoring of microstructure

Outlook

Within the proposed ETN project the beam shaping and monitoring capabilities are combined to enable the fast and reliable processability of two nickel-based alloys with desired microstructural properties.

ETN project idea

- **Innovative process strategies:** Combining new beam shapes with monitoring systems to enable:
- Processing of new hard-to-weld materials
- Acceleration of the process (by a factor of min. 3) and reducing the costs per part
- Tailoring of the microstructure and properties

Objectives

ETN Project Proposal

- Demonstration of microcrack-free PBF-LB/M of turbine for two defined high gamma prime alloys (e.g. IN939, AE13421) using state-of-the-art process strategies
- Implementation of beam shaping technology to improve the AM process productivity combined with the manufacturing of defect-free parts
- Implementation of monitoring systems to evaluate process behavior (thermal imaging, absorption measurements, and diode-based optical process emission measurements)
- Controlling the melting and solidification behavior for defect-free manufacturing based on the monitoring data of the demanding high gamma prime alloys
- Transfer to industrial equipment

Timeline

ETN Project Proposal

Deliverable 1 – Report on recommendations on laser beam shaping equipment and process setup.

Deliverable 2 – Report on recommendations on melt pool monitoring/controlling.

Milestone 0 - Start of the project, Milestone 1 - Laser beam shaping equipment and process setup capabilities demonstrated,

Milestone 2 - Demonstrate melt pool monitoring/controlling.

Prof. Dr.-Ing. Katrin Wudy (TUM) | Professorship of Laser-based Additive Manufacturing

Thanks to the team!

Jonas Grünewald,

M.Sc.

Research Associate

Technical University of Munich TUM School of Engineering and Design Professorship of Laser-based Additive Manufacturing

Boltzmannstrasse 15 D-85748 Garching

Tel. +49.89.289.55321

jonas.gruenewald@tum.de www.mec.ed.tum.de/lbam