

Why should gas turbines (or dispatchable thermal turbines) running on carbon-neutral fuels be recognised as a "final product/specific component considered to be primarily used for the production of net-zero technologies" in the Net-Zero Industry Act?

Gas turbines and other turbomachinery solutions operating on Carbon-neutral fuels should be considered net-zero technologies because they provide dispatchable, reliable, and low-emission power generation while fully aligning with decarbonisation targets. Below are the key reasons justifying their net-zero status:

1. Zero or near-Zero carbon emissions combustion:

- Hydrogen (H₂) combustion produces no CO₂ emissions, only water vapour (H₂O) and small amounts of NO_x (which can be mitigated with advanced combustion techniques). (See ETN Global report on Hydrogen combustion challenges)
- Sustainable (bio)fuels (such as biomethane or synthetic fuels) are derived from organic waste, agricultural residues, or captured CO₂, making their carbon footprint close to neutral when considering the full life cycle. (ref. RED II directive).
- If a fuel does not contribute additional CO₂ to the atmosphere or is derived from captured carbon, it qualifies as net-zero.

2. Enabling grid stability in energy system with a high level of Variable Renewable Energy sources

- Gas turbines operation on hydrogen or biofuel provides fast-ramping, dispatchable power, ensuring grid reliability when solar and wind output fluctuate. (See ACER report on Flexibility solutions)
- Unlike batteries, gas turbines can store and convert renewable fuels into power with high peak capacity over long durations, complementing seasonal energy storage.
- Net-zero energy systems require backup solutions for renewables—gas turbines running on hydrogen or sustainable (bio)fuels ensure uninterrupted clean power. (See ETN Whitepaper on Critical role of dispatchable power generation)

3. Scalability and infrastructure readiness

- Many existing gas turbine power plants can be retrofitted to run on hydrogen or (bio) fuels, significantly reducing emissions without new infrastructure. (See ETN Global report on Hydrogen Gas Turbines)
- Hydrogen-ready gas turbines are already being deployed, and (bio) fuels can be used in current systems with minor modifications.

• A scalable and cost-effective transition to net-zero is possible by leveraging existing assets, rather than building an entirely new power system.

4. Carbon Capture compatibility for additional reductions

- Hydrogen and sustainable (bio) fuel-fired gas turbines can be integrated with Carbon Capture, Utilisation, and Storage (CCUS) to further remove any remaining emissions, making them a negative-emissions solution in some cases.
- Net-zero systems must eliminate residual emissions—CCUS integration ensures turbines go beyond net-zero when needed.

Conclusion: Gas Turbines – a Net-Zero Technology

Gas turbines running on Carbon-neutral fuels fully support a net-zero energy future by:

- Producing little to no CO₂ emissions
- Providing dispatchable and affordable backup for renewables
- Leveraging existing infrastructure for cost-effective decarbonisation
- Enabling deeper emissions reductions when combined with CCUS
- For a secure, flexible, and net-zero energy system, gas turbines running on clean fuels are not just an option—they are a necessity.

Call to action:

We advocate that gas turbines running on carbon-neutral fuels should be recognised as a "final product/specific component considered to be primarily used for the production of net-zero technologies" in the Net-Zero Industry Act.