

RWE

Advancing CO₂ Capture -

RWE Cutting-Edge Research for Real-World Solutions

ETN CCS Webinar Series
06th February 2025

Dr. Sandra Schmidt RWE Power AG

CO₂ Capture – Solid knowledge base at RWE

19 years active participation in CO₂ Post-combustion Capture Pilot and Demonstration Projects

>55.000 h

>18.000 h

>49.000 h

Post-Combustion Capture at RWE's Innovation Center

All aspects of CCUS

Solvent management

Emission mitigation and CO₂ quality

Solvent management and CO₂ quality

Highest capture rates

Post-Combustion Capture Pilot Plant at Niederaussem

Evaluation of the process performance needs longtime testing with real flue gas

- $1,550 \text{ m}^3\text{N}/\text{h}$ flue gas flow
- 7.2 t_{CO2}/day CO₂ product
- 90% CO₂ capture rate
- 97% availability
- First PCC pilot plant commissioned in Germany
- Instrumentation: 285 online measurements
- 24/7 operation

FGD: Flue gas desulphurization WESP: Wet electrostatic precipitator DCC: Direct contact cooler

Reduction of the O_2 -concentration in the solvent means the reduction of:

- solvent degradation, make-up demand
- solvent flow
- corrosion
- effort for CO₂ purification

Goals:

- 90% O₂-reduction in the solvent
- 50% reduction of the degradation rate
- Reduction of the O₂-concentration in the CO₂ product to <10 ppm

D₂IVE - Deep Removal of CO₂ and InnoVative Electrification concepts

Negative CO₂ emissions by highest capture rates at amine-based capture plants and by electrochemical technologies (pH swing)

First results:

- CO₂ content in the CO₂-lean flue gas less than ambient air achieved
- 321 ppmv @ only 30% higher energy demand
- 99.8% capture rate

SCOPE - Sustainable OPEration of post-combustion Capture plants

Providing facts to the discussion on BAT from 24/7 longtime testing

Demonstration and holistic analysis of emission management technologies at Niederaussem

- Testing of emission mitigation technologies
- Effects of solvent aging at capture rates of 90-98%
- tests on dynamic and start/stop behaviour
- Validation of simulation tools (ASPEN, ProTreat, ML)
- Mimicked off-gas of natural gas fired plants (CO₂ 4%, O₂ 15%)

Test of emission mitigation technologies for CESAR1 at Niederaussem

• Flue gas source: 1,000 MW lignite-fired power plant

Operation mode: 24/7, 300 kg_{c02}/h@90% capture rate,

2-amino-2-methylpropan-1-ol

piperazine

Solvent: CESAR1

· Test campaigns with more than 20 configurations of emission mitigation technologies: water wash, double water wash, acid wash, dry bed (OASE aerozone®), pretreatment.

Effects of high capture rates and of CO_2/O_2 content in the flue gas

For CESAR1 only small effects of the capture rate on emissions; changes of the CO_2/O_2 concentration affect the temperature profile in the absorber and emissions

(Proprietary) emission mitigation technologies are available to control emissions regardless of the capture rate and the O_2 content in the flue gas

Emission management

Aerosol and vapor-based emissions - solvent CESAR1

Solid particles in the flue gas with diameter <100 nm can cause aerosol formation

(Proprietary) emission mitigation technologies are available to control emissions regardless of the particle number concentration and size distribution

Dynamic operation of CO₂ capture plants

Load changes, Start/Stop behaviour - not only important for capture rate and thermodynamics, but also regarding emissions

Until now, the dynamic behaviour of capture plants cannot be simulated. But real-world data are available for model validation and for the prognosis of trends.

The Post-Combustion Capture Project at Knapsacker Hügel I

From R&D to use

The Post-Combustion Capture Project at Knapsacker Hügel II

From R&D to use

Conclusion

Experience of more than 115,000 operating hours of the CO_2 capture pilot plant at Niederaussem and 20 years of CCUS projects

Project development, Design, Funding, Permitting, Construction, Commissioning

Solvent Management

Process chain, Plant configuration, Integration, Operation, Measurement technologies

Mitigation of Wastes and Emissions, Health & Safety & Environment

De-Risking and Minimisation of CAPEX and OPEX, Use of Synergies

Consultancy and Supporting Work for RWE's BECCUS projects (Technology Provider, Authorities, Networks)

Acknowledgements

ACT SCOPE Project No 327341 This project has received funding from RVO (NL), FZJ/PTJ (DE), RCN (NO), BEIS (UK), DST (IN), and DOE (USA) through the ACZ initiative. www.scope-act.org

hvc.

ACT MeDORA

This project has received funding from The RCN (no 308765), FZJ/PTJ (no 03EE5160) and PPS-toeslag TKI-Energie (TKI 2023 MeDORA, program: Nieuw Gas/CCS)

www.sintef.no/en/

projects/2023/medora-membrane-assisted-dissolvedoxygenremoval-from-amine-solution-for-co2-capture/

This Project has been funded by partners of the CETpartnership (https://cetpartnership.eu) and FZJ/PTJ-MWIKE (no EFO-0216), https://DRIVE-co2.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006799. www.takeoff-project.eu

RWE SSE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No www.eco2fuel-project.eu

