

Thematic Presentation – ISOP Project

David Sánchez, University of Seville

23 October 2024

Innovation in Supercritical CO₂ Power Systems

Prof. David Sánchez, Project Coordinator University of Seville

ETN Global October Workshop Stuttgart, October 8-10 2024

R&D funding in EU – Horizon Europe (2021-2027, €95.5 billion)

Widening participation & spreading excellence

€3.4B

Reforming & Enhancing the European R&I system

ISOP – Facts & Figures

- Only EU-project specific to sCO₂ technologies funded by EU in 2022
- Largest sCO₂-related project funded by EU in 2022
- <u>Largest</u> consortium of any sCO₂-related project funded by EU
 - 6+1 Academic institutions
 - 9 Industry partners
 - 6 Associated Partners for secondments (1 R&D Centre + 5 Industry)
- 10 countries involved
- 4.4 M€ (3.85 EU + 0.55 UKRI) total budget
- <u>4 years</u>: January 1st 2023 December 31st 2026

ISOP – Facts & Figured

ISOP – Facts & Figures

ISOP – Facts & Figures

Academia (7)

Industry (9)

Doosan Škoda Power

Associates (6)

ISOP – Implementation

ISOP – Implementation

ISOP – Implementation (objectives WP1)

WP1:

- To develop advanced AI algorithms that enable the optimal integration of sCO₂ power systems components...
- ...for various thermal energy sources and end use applications,...
- ...with direct and indirect heating...
- ...and including carbon capture in the former,...
- ...based on KPIs of thermal, economic environmental and societal nature

MILANO 1863

ISOP – Implementation (objectives WP1)

- DC1: Integration of directly-fired oxycombustion sCO₂ power cycles
- DC2: Market uptake of sCO₂ power systems for carbon-neutrality by 2050
- DC3: Integration of indirect sCO₂ power cycles
- DC4: Large Scale Energy Storage based on sCO₂ systems
- DC16: sCO₂ mixtures to expand the design space of sCO₂ power systems

ISOP – Implementation (objectives WP2)

WP2:

- To develop accurate prediction tools for the simulation of transient operation of sCO₂ power cycles,...
- ...and to investigate innovative concepts for control and optimisation of operational strategies...
- ...using advanced digital and artificial intelligence techniques.

ISOP – Implementation (objectives WP2)

- DC5: Operation of indirect sCO₂ power cycles
- DC6: Operation of directly-fired sCO₂ power cycles with carbon capture
- DC7: Dynamic operation of sCO₂ power systems under variable load
- DC8: Control strategies and optimisation of control of sCO₂ power systems for direct and indirect heating configurations

ISOP – Implementation (objectives WP3)

WP3:

- To develop innovative methods to enhance aerodynamic and mechanical performance, reliability, and operability of key system components, namely:
 - Turbomachinery and
 - Heat exchangers.

ISOP - Implementation (objectives WP3)

- DC9: Fundamental studies to enhance off-design performance of MW-scale sCO2 compressors
- DC10: MW-scale axial sCO₂ turbine flow path enhancements to improve off-design performance
- DC11: Fundamental study of pseudo-condensation of sCO₂
- DC12: Numerical investigation of mixing process in headers of sCO₂ heat exchangers
- DC17: Innovative MW-scale, axial turbine designs for enhanced flexibility

ISOP – Implementation (objectives WP4)

WP4:

- To develop advanced modelling and experimental methods that enable selection and development of
 - materials
 - coatings
 - and manufacturing techniques
- for the reliable and safer operation of key components in sCO₂ power cycles

ISOP – Implementation (objectives WP4)

- DC13: Advancing the durability of polymeric parts and coated components in sCO₂ power systems
- DC14: Advancing the durability of corrosion resistant alloys for sCO₂ power systems
- DC15: Additive manufacturing technologies of heat exchangers

ISOP – project interaction

		WP1: System Integration			WP2: Operation, Performance, Control				WP3: Component Innovations				WP4: Materials, Manufacturing					
	Doctoral Candidates	DC1	DC2	DC3	DC4	DC16	DC5	DC6	DC7	DC8	DC9	DC10	DC17	DC11	DC12	DC13	DC14	DC15
	Hosts	POLIMI	USE	CVUT	TUW	POLIMI	CVUT	TUW	USE	BUL	BUL	POLIMI	USE	USTUTT	USTUTT	IST	IST	USTUTT
		EAI	ETN	EAI	EAI	RPOW	ВН	вн	SIW			ВН	SIEMENS	TR	FIVES	CITD	CITD	CITD
	Secondments	System	LCA/Env,	System	Energy	sCO2	Operation -	Operation -	Transient	System	Compress.	Expansion -	Expansion -	Heat Exch.	Hext Exch	Materials -	Materials -	Additive
		Integration	Market	Integration	Storage	Mixtures	direct	indirect	Perfo.	Control		Off-design	Flexibility	Condenser	Recuperat.	Polymeric	Corrosion	Manuf.
	DC1 (TR)																	
_	DC2 (ACO2)																	
WP1	DC3 (INERCO)																	
	DC4 (ETN)																	
	DC16 (AAL)																	
	DC5 (DSPW)																	
WP2	DC6 (SIW)																	
⋝	DC7 (DSPW)																	
	DC8																	
	DC9																	
~	DC10 (EASY)																	
WP3	DC17 (SIW)																	
_	DC11 (FIVE)																	
	DC12 (TR)																	
-	DC13 (BH)																	
WP4	DC14 (ROSS)																	
_	DC15 (ROSS)																	
			Share cycle parameters					Share models and validation data					Share material properties					
	Type of Interaction		Secondments						Share component characteristics				Share manufacturing limitations					
			Share design parameters					Market and cost limitations				Share transient behaviour						

Current and next steps

	Theme(s) and main programme	Organiser	Where	Time
WSH1	Introduction to sCO ₂ power systems	POLIMI/BH	Milan	Sep23
WSC1	Introduction to material coatings, manufacturing techniques and fundamental modelling of heat transfer	USTUTT/FIVES	Stuttgart	Jan24
WSH2	Commercialisation: IPR management, economics, policy and regulations	USE/EAI/RPOW	Seville	May24
WSC2	Advancements on materials for energy	IST/CITD	Lisbon	Nov24
WSH3	Modelling Power Systems	TUW/SIW	Vienna	Apr25
WSH4	sCO ₂ system component design and analysis	CVUT/SIEMENS	Prague	Sep25
WSC3	Energy Cultures	BUL/BH	London	Feb26
ISC	sCO ₂ in the future power systems mix	ETN/BH/USE	Brussels	Jul26

Proof of life...

ISOP

Thank you for your attention!

ETN Global October Workshop Stuttgart, October 8-10 2024

