Cranfield University: Gas Turbines Since its Inception

1946 Cranfield College of Aeronautics

For Education and Research

One of the 4 original units was Aircraft Propulsion
Now Propulsion & Thermal Power Eng Centre

One of the 4 original courses was Aircraft Propulsion

Now Thermal Power & Propulsion MSc

1969 Cranfield Inst of Technology (University)

1993 Cranfield University (change of name)

P&TP Eng Centre: Comprises 250+ Staff & Postgraduates

8000 m² GT Laboratories

Owns 18 Gas Turbine Engines

Education Encompasses Thermal Power & Propulsion MSc

UK and Global Professional

Education 80 Doctoral Researchers

ETN Global October 2024 Workshop

Training Session

Gas Turbine Gas Path Diagnostics

Dr Yiguang Li

ASME Fellow, HEA Fellow, PhD, MSc, BSc Reader in Gas Turbine Performance and Diagnostics Faculty of Engineering and Applied Sciences, Cranfield University Cranfield, Bedford MK43 0AL, United Kingdom

Gas Turbine Degradation & Representation

Recoverable Degradations

Fouling (deposition)

Non-Recoverable Degradations

https://preciseflight.com/article/aviation-bird-strikes-solutions/

Foreign Object Damage (FOD)

<< International Turbomachinery>> Vol.45 No.5, Sep./Oct. 2004

Domestic Object Damage (DOD)

("Failure analysis of gas turbine blades" by Naeem, Jazayeri, Nesa Rezamahdi & Toosi, 2005)

Creep

Corrosive Damage

Salehnasab B., Poursaeidi E., Mortazavi SA., Farokhian GH. Hot corrosion failure in the first stage nozzle of a gas turbine engine. EFA. Elsevier Inc.; 2016;

(Schrade & Staudacher, 2014)

<<International Turbomachinery>> Vol.45 No.5 Sep./Oct. 2004

Combustion system deterioration

Erosion

> Recoverable

➤ Non-recoverable

> Cumulative effect

Health Parameters

COMPRESSOR:

Flow Capacity Index/Scaling Factor
Efficiency Index/Scaling Factor
Pressure Ratio Index/Scaling Factor

$$SF_{c,FC} = FC_{c,\deg} / FC_{c}$$

$$SF = m / m$$

$$SF_{c, \mathit{Eff}} = \eta_{c, \deg} / \eta_c$$

$$SF_{c,PR} = PR_{c,\deg} / PR_c$$

ASSUMPTION:

$$SF_{c,FC} = SF_{c,PR}$$

 $Health\ Index = SF - 1$

Health Parameters

TURBINE:

Flow Capacity Index/Scaling Factor Efficiency Index/Scaling Factor Enthalpy Drop Index/Scaling Factor

$$SF_{t,FC} = FC_{t,\deg} / FC_{t}$$

 $SF_{t,Eff} = \eta_{t,\deg} / \eta_{t}$
 $SF_{t,DH} = DH_{t,\deg} / DH_{t}$

ASSUMPTION:

$$SF_{t,FC} = -SF_{t,DH}$$

$Health\ Index = SF - 1$

COMBUSTOR:

Efficiency Index/Scaling Factor

$$SF_{b,Eff} = \eta_{b,\deg}/\eta_b$$

 $oldsymbol{\eta}_b$

 $Health\ Index = SF - 1$

Combustor
$$_Load = f(P_b, \Delta T_b)$$

Fault Signature

Fault Signature: Measurement Deviation

$$\Delta X = \frac{X_{actual} - X_{ideal}}{X_{ideal}}$$

Fault signature of a single shaft industrial engine

Example of Performance Degradation

Inlet mass flow: 408.66 kg/s

Compressor pressure ratio 15.2

Turbine entry temperature 1697.8 K

Exhaust temperature 871.24 K

Net power output 165.93 MW

Overall thermal efficiency 35.57 %

Example of Performance Degradation

Fault	Represented By	Range
Compressor Fouling	Drop in Γ	0.0 - (-5.0%)
	Drop in η c	0.0 (-2.5%)
Compressor Erosion	Drop in Γ	0.0 - (-5.0%)
	Drop in η c	0.0 - (-2.5%)
Turbine Fouling	Drop in Γ	0.0 (-5.0%)
	Drop in η τ	0.0 - (-2.5%)
Turbine Erosion	Rise in Γ	0.0 - (+5.0%)
	Drop in η τ	0.0 - (-2.5%)
FOD	Drop in η _C and η _T	0.0 - (-5.0%)

Example of Performance Degradation

Engine fault and parameter relationship (Urban, 1975)

Direct matrix inverse approach

Engine model:

$$\vec{z} = h(\vec{x})$$

0 – Nominal diagnostic point

Expansion:

$$\vec{z} = h(\vec{x}_0) + \frac{\partial h(\vec{x})}{\partial x}(\vec{x} - \vec{x}_0) + \text{HOT}$$

Linear engine model:

$$\Delta \vec{z} = H \cdot \Delta \vec{x}$$

Linear GPA model:
$$\Delta \vec{x} = H^{-1} \cdot \Delta \vec{z}$$

$$\Delta \vec{z} = H \cdot \Delta \vec{x}$$

Assumptions for GPA:

- lack A set of accurate measurement deltas (Δz) is available
 - repeatable, free of measurement noise & bias
- The linear model represents engine performance accurately around a reference point
- \bullet The ICM (H) is invertible

Potential capabilities of linear GPA:

- Simple
- Fast
- Fault detection
- Fault isolation
- Fault quantification
- Deal with multiple faults

Challenges of linear GPA:

- Non-linearity
- Data repeatability
- Selection of measurements
- Smearing effect

Non-Linear Gas Path Analysis (GPA)

Non-linear GPA

Convergence of non-linear GPA:

- Under-relaxation
- Convergence criteria:

$$\Delta \vec{z}_{sum} = \sum_{j}^{M} \left| \Delta z_{meas_{j}} - \Delta z_{cal_{j}} \right| < \delta$$

Data Pre-Processing

Data Repeatability - Measurement Noise and Noise Filtering

Noise filters

> Rolling average

$$\overline{x}_{t} = \frac{1}{I} (x_{t} + x_{t-1} + \dots + x_{t-I+1})$$

> Exponential average

$$\bar{x}_{t10} = \bar{x}_{(t-1)_{10}} * 0.85 + x_t * 0.15$$

> Artificial Neural Networks

Data Pre-Processing

Data Repeatability - Data Corrections

Using referred parameters (based on θ =T/288.15 & δ =P/101.325 corrections) is not accurate

(Such as
$$N^* = N/\sqrt{\theta}$$
, $W^* = W\sqrt{\theta}/\delta$, $T^* = T/\theta$, $P^* = P/\delta$)

$$\Delta z_{i,a} = \Delta z_{i,b} - \left(\Delta z_{i,AB} - \Delta z_{i,A1B1}\right)$$

Comparison of data (fault signatures) before and after data correction

Measurement Selection Criteria

- Availability
- Number of sought faults & health parameters
- Sensitivity
- Correlation
- Sub-sets and global set
- Redundancy

Smearing Effect & CFC

Smearing effect:

Component Fault Cases (CFC)

Component Fault Case	Pre-defined faulty components	
CFC1	Compressor	
CFC2	Burner	
CFC3	Turbine 1	
CFC4	Turbine 2	
CFC5	Compressor + Burner	
CFC6	Compressor + Turbine 1	
CFC7	Compressor + Turbine 2	
CFC8	Burner + Turbine 1	
CFC9	Burner +Turbine 2	
CFC10	Turbine 1 + TURBINE 2	

Comparison between linear & non-linear GPAs

	Linear GPA	Non-linear GPA
Accuracy:	Low	Higher in general
Computation time:	Short	Slightly Longer
Convergence	No problem in general	May diverge

Well defined GPA

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Poorly defined GPA

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Demonstration of GPA diagnostic Application

Step 5: **GPA Diagnostic Analysis**

Step 4:

Measurement **Selection**

Step 3: **Data Pre**processing

Step 2: Data **Acquisition &**

Step 1: Gas Turbine Model Sep Up & Adaptation

https://www.manxutilities.im/media/1138/welcome-to-pulrose-power-station.pdf

GE2500+ Engine

Performance Specification:

Power output: 29 MW

Thermal efficiency: 38.8%

Total pressure ratio: 23.1

Exhaust gas flow rate: 83 kg/s

Performance Model

Measurement Data Selection

Make ensure that the selected data are at steady state conditions.

Fig. 8-21: PYTHIA data pre-processing

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Step 2: Data Acquisition & Correction

No major changes in pressures and PCN after data corrections

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

More corrections to temperature measurements

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Data After Pre-Processing using Three Pre-processing Methods

Compressor exit P_{t3}

Compressor exit T_{t3}

Power turbine exit T_{t8}

Compressor turbine exit T_{t6}

Compressor turbine exit P_{t6}

Compressor shaft speed PCN

Comparison of Predicted Compressor Fouling

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Day

(1) Indirect Approach

(2) Direct Approach

(3) Direct Approach + Exponential Average

- Indirect approach (1) provides smooth results
- Direct approach (2) is more convenient, but with more scattering
- Direct method + Exponential average (3) further reduces scattering (2)
- Trend line and the rate of degradation can be identified
- Compressor washing is clearly identified

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Step 5: GPA Diagnostic Analysis

Summary of Diagnostic Analysis

- Fouling results in
 - √ 0.02% loss per day in flow capacity index
 - √ 0.02% loss per day in efficiency index
- Off-line compressor washing results in
 - √ 1.5% gain in flow capacity index
 - √ 1.0% gain in efficiency index

Demonstration of GPA diagnostics using digital twin Platform PYTHIA

Demonstration of GPA Diagnostics

Demonstration of GPA Diagnostics

Engine Model

ETN Global Oct 2024 Workshop – Training on Gas Turbine Gas Path Diagnostics by Dr Yiguang Li

Configuration of a 2-shaft gas turbine model

Performance Specification (Sea Level Static ISA condition)

Compressor pressure ratio: 21

Turbine entry temperature: 1,550 K

Exhaust gas flow rate: 80 kg/s

Power output: 30 MW

Thermal Efficiency: 39.8%

Demonstration of GPA Diagnostics

Faulty Component: turbine

Health parameters:

$$\eta_{c1}$$
 η_{b1} η_{t1} η_{t2}

$$\Gamma_{c1}$$
 Γ_{t1} Γ_{t2}

Measurement parameters:

$$PCN = \begin{array}{cccc} P_3 & & P6 & P8 \\ T_3 & & T6 & T8 \end{array}$$

Demo Phase 1 Simulation of Measurement Samples

- Implementation of degradation
- Measurement setting
- Run engine model and record measurement data

Demo Phase 2 Diagnostics Using Gas Path Analysis (GPA)

- Upload measurement samples and select a sample
- GPA setting
- Run GPA to predict engine degradation
- Run GPA to predict a sensor fault