

R&D activities on sCO₂ in Europe

sCO₂ cycles for Nuclear Power Production

Seventh episode – 30 September 2024

This webinar is in cooperation with 9 European R&D projects

COMPASSCO,

SCARABEUS 🔇

CARBOSOLA

sCO₂-Efekt

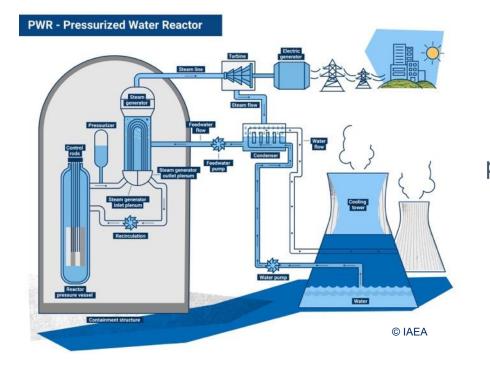
ETN

Webinar content & speakers

- Nuclear landscape, a brief introduction (Moderator Albannie Cagnac – EDF)
- Use of carbon dioxide in nuclear energy (Otakar Frýbort – Research Centre Řež)
- sCO₂ for molten salt reactors (Paul Levisse – NAAREA)
- Fusion Energy and the role of sCO₂ (Jack Acres – UK Atomic Energy Authority)

What is the first word that comes to your mind when thinking about Nuclear Power Generation?

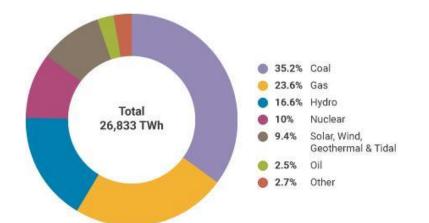
Baseload Power)ecarbonisati	ion Ca	arbon omics	ions free	
Decarbonation SCC								
	Decarbonation SC			CO2 Power Conversion Fision				
Heav	ily regulated	Sco2	Zero	o Emissions	Slow	Low Carb	on	
Ticav		high ris	k Ex	kpensive	Safe	tv Nucle	ear waste	
Cheap	Promising			CNAD	Waste		Innovation	
Dangerous Clean er			rgy	SMR	waste	Stable	Efficiency	
Capital cost	Power cyc		an (CO2 fre	e Useful	Resurfa		
Future Special project Steam turbine Edficiency								
	Closed cycle	e Low CO2 Radioaktive Wasser issue Baseload						
	Cheap rel							


Nuclear landscape, a brief introduction

Albannie Cagnac, EDF

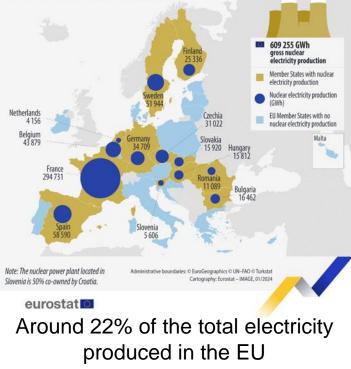
2 October 2024

Nuclear Energy ?


Nuclear plants vs Coal & Gas plants

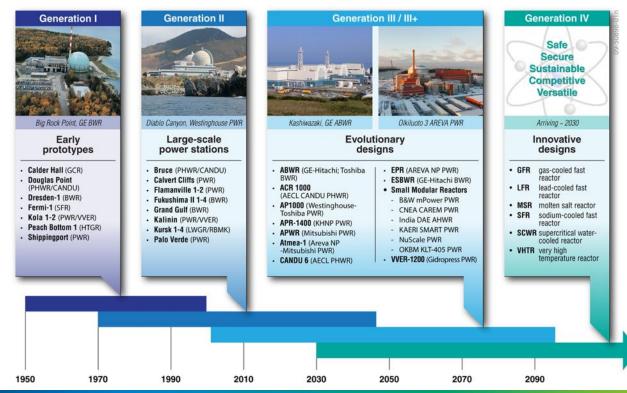
Nuclear power plants use nuclear fission (and one day nuclear fusion) to produce electricity while thermal power plants use the heat from burning coal or gas to produce electricity.

Both need turbine, condenser, cooling system, heat exchangers.

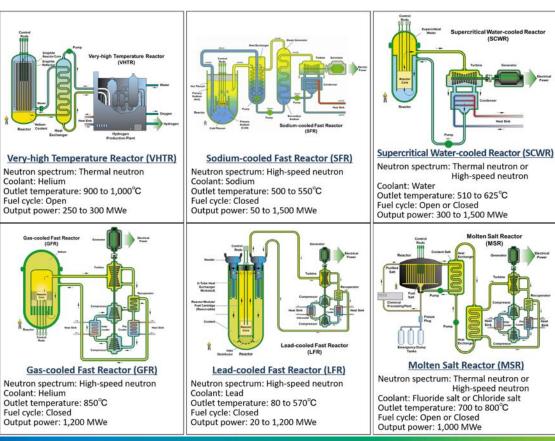

Nuclear Energy in the world

Worldwide Production

Source: IEA

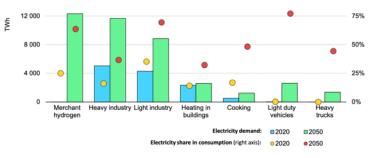

Nuclear energy in the EU, 2022 (gross nuclear electricity production, GWh)

Nuclear Technology?


Technology evolving with scientific and engineering advances.

Next generation : Generation IV concepts

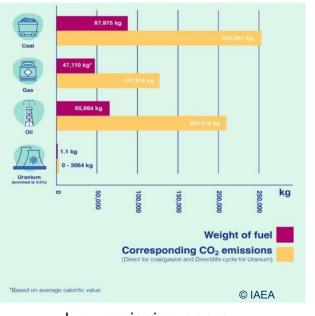
First researches for sCO2 use in nuclear : 1960's / 1970's



Reviving interest in nuclear potential for global transition

Increasing demand

Global electricity demand and share of electricity in total energy consumption in selected applications in the Net Zero Emissions by 2050 Scenario



IEA. All rights reserved.

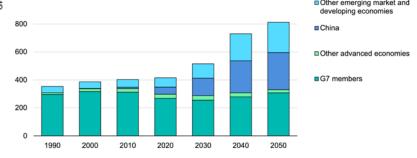
Source: IEA (2021), Net Zero by 2050: A Roadmap for the Global Energy Sector.

Yes! In fact, combined with renewables, like solar or wind energy, nuclear energy offers reliability, flexibility and very low emissions.

Low emission energy

2 October 2024

Reviving interest in nuclear's potential

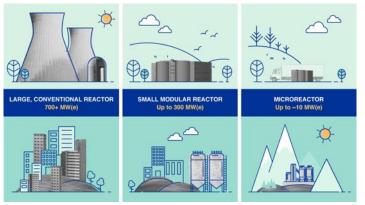


New non electric applications

Increased power capacity to reach net zero targets

Nuclear power capacity by country/region in the Net Zero Emissions by 2050 Scenario

IEA. All rights reserved.


Note: Power capacity refers to gross capacity, before accounting for onsite electricity consumption. Sources: IEA (2021), <u>Net Zero by 2050: A Roadmap for the Global Energy Sector</u>; IEA (2021), <u>Achieving Net Zero Electricity</u> <u>Sectors in G7 Members</u>.

NEW R&D PROGRAMS or CONSTRUCTIONS (USA, FR, UK, PO, CZ, CA, PRC, INDIA...)

2 October 2024

New Challenges for competitiveness

New designs : SMRs

Small – fraction of the size of a conventional NPP
Modular – factory-assembled and transported as a unit to a location for

installation.

•**Reactors –** to generate heat to produce energy.

Challenges

Technological innovations (efficiency, safety)

Cost-competitiveness

Policy and regulatory

Safety and waste management

The advantages of sCO2 cycles, already discussed in previous episodes, make them a good choice for these new reactors.

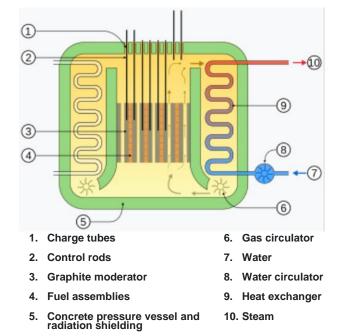
ETN

Thank you for your attention

Use of carbon dioxide in nuclear energy

Otakar Frýbort Research Centre Řež

Summary


- Use of CO₂ in existing nuclear power plants
- General comparison of Rankin and EB cycle
- Nuclear reactor concepts under development using the sCO₂ power cycle
- Issues for implementation of sCO₂ cycles in nuclear energy
- Demonstration of sCO₂ cycles
- Conclusions

Use of CO₂ in existing nuclear power plants

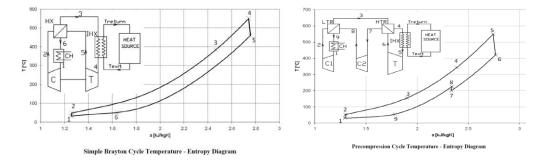
Advanced Gas-cooled Reactor

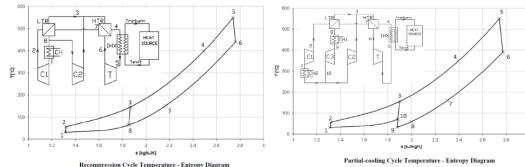
- Designd and developed in UK
- The prototype was commissioned at Windscale in 1962
- Commercial use since 1976
- Core moderated by graphite
- CO₂ in gaseous phase used as a cooling media
- Power production through Rankine steam cycle

https://en.wikipedia.org/wiki/Advanced_Gas-cooled_Reactor

Use of CO₂ in existing nuclear power plants

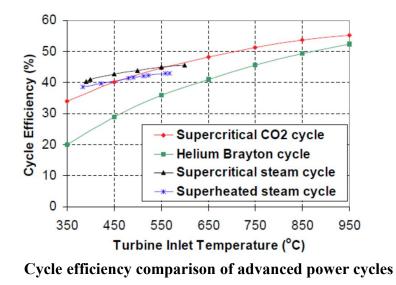
- A1 Jaslovske Bohunice
- Design developed in Czechoslovakia
- The pilot plant became operational at Jaslovske Bohunice in 1972
- Core moderated by heavy water
- CO2 in gaseous phase used as a cooling media
- Power production through Rankine steam cycle
- 100g of silica gel permanently stopped the reactor in 1977

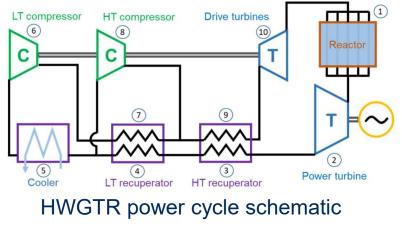



The cross section of A1 nuclear powerplant

sCO₂ conversion cycle architecture

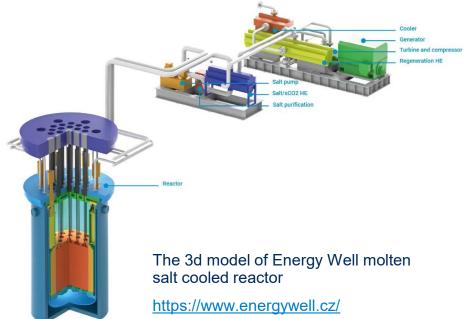
- Selection of the most suitable cycle layout depends on:
 - inlet temperature
 - required temperature drop
 - pressure level/ratio
 - thermal power
- The selected cycle architecture affects mainly:
 - cycle efficiency
 - total power of the cycle
 - investment demand



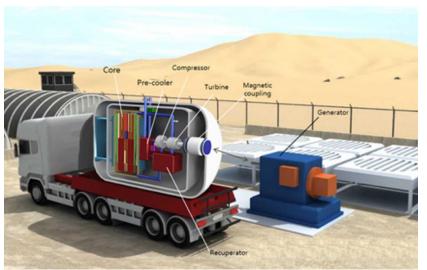

General comparison of Rankin and EB cycle

- Subcritical steam cycles 42%
- Supercritical steam cycles less than 50%
- sCO₂ above 50% on high temperatures
- Other advantage of the sCO₂ cycle in comparison with SCW – mainly in dimensions and corrosion issues

Nuclear reactor concepts under development using the sCO₂ power cycle


- Design by Terra Power, US
- Gas cooled fast reactor concept compact reactor core design
- Thermal power of 500 MW
- Direct Brayton cycle
- Main sCO₂ parameters
 - Tmax 550 °C
 - Pmax 22.5 MPa
- Gross/Overall efficiency 41/36%

https://www.sciencedirect.com/science/article/pii/S1738573321005702


Nuclear reactor concepts under development using the sCO₂ power cycle

- Design by CVR, Czech Republic
- Primary and secondary cycle -FLiBe salt
- sCO₂ power cycle is used for power generation
- Thermal power of 20 MW
- Main sCO₂ parameters
 - Tmax 600 °C
 - Pmax 25 Mpa
 - Efficiency 40%

Nuclear reactor concepts under development 🍣 using the sCO₂ power cycle KAIST MMR - Supercritical CO2-cooled micro modular

- reactorDesign by Kaist, South Korea
- Direct sCO₂ cycle
- Thermal power of 36 MW
- 20 years of operation without refueling
- Main sCO₂ parameters
 - Tmax 650 °C
 - Pmax 20 Mpa
 - Efficiency 33%

Visualization of KAIST MMR

https://breakthroughs.kaist.ac.kr/sub02/view/id/278

Issues for implementation of sCO₂ cycles in nuclear energy

- Operation pressure of sCO₂ much higher than primary loop pressure
- Licencing
 - The technology is not fully verified
 - The long-term reliability hasn't been demonstrated
 - It is mainly planned to be in connection with other non-validated technologies
 - Missing component reliability data

Demonstration of sCO₂ cycles

Loops

- SNL loop
- Viena
- sCO₂ loop at CVR
- ...
- Demonstration cycles
 - Step
 - Sofia
 - Solarscool H2020 project
 - Desolination H2020 project

- Possible applications for demonstration of the operability of the sCO₂ cycle
 - Waste heat recovery
 - Thermal energy storage
 - CSP applications

• ...

•

Conclusions

- Utilization of sCO₂ Brayton cycle is the way how to improve GIV NPP efficiency
- Use of sCO₂ cycle in PVRs or BWRs is not beneficial
- Before it's application, the cycle needs to be fully verified in the labs and further in industrial application

sCO₂ for molten salt reactors

Paul LEVISSE NAAREA

27

30 September 2024

NAAREA a French company

providing an energy access service on an industrial scale.

Recycling of nuclear spent fuel

¥

 $80~\text{MW}_{\text{th}}$ / 40 MW_{e}

Nuclear reactor Fourth generation molten salts and fast spectrum

Stable & competitive price

N uclear
a bundant
a ffordable
r esourcefull
e nergy, for
a ll

NAAREA a French company

providing an energy access service on an industrial scale.

 $80 \text{ MW}_{\text{th}}$ / 40 MW_{e}

Approximately 100,000 Western households

2700 buses or heavy goods vehicles

90 % of the industrial plants

The largest ships in the world fully loaded

110,000,000 m3 of desalinated water consumption of 2 million inhabitants

5,700 tonnes/year of carbon-free hydrogen.

Confidential


NAAREA's Approach

A nuclear technology

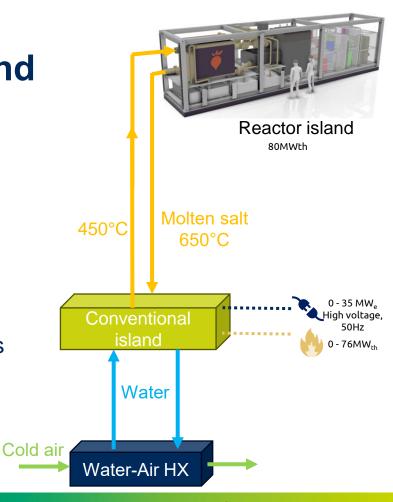
- Molten salt reactor → passive safety
- Fast spectrum \rightarrow uses Nuclear spent fuel
- eXtra-small \rightarrow reactor in a 40ft container
- 80 MWth / 40 MWe
- Water free / Pressure Free

Sustainable, distributed, dispatchable, safe energy

NAAREA has the responsibility of the full cycle

Why sCO_2 ?

Confidential


ETN Gl©bal

NAAREA's conventional island

- 80MWth molten chloride salt (650°C)
- Molten salt coming out of the reactor island is non-radioactive and non-contaminated
- Power conversion island :
 - Recompression Brayton sCO2 cycleDirectly coupled to the grid

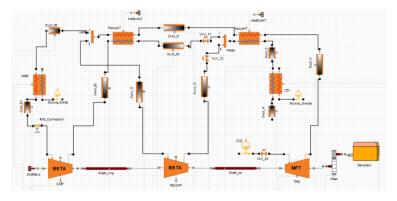
 - Electricity and/or heat
 Load variations to follow client requirements
 - No nuclear safety requirements on conventional island
- Cycle cooling :
 - Air cooled w/ intermediate water loop

naarea

Confidential

Why sCO₂ with Molten Salt SMRs

	Characteristic of molten salt SMR	Synergy with sCO2 cycle		
Temperature	High temperature fluid with operating range between 400°C and 700°C	sCO2 displays significant efficiency benefit vs steam >550°C (SCW costly in <200MWth range) Good matching between molten salt temperatures and CO2 temperatures across main heater		
Compacity	Molten plutonium salts enable for very compact reactors \rightarrow Container implantation for reactor island	sCO2 enables compact turbomachinery and conventional island → Reduce overall footprint of plant for installation on industrial sites		
Reactivity	Fast neutron molten salt reactors can react rapidly to load changes (no Xe poisoning, limited thermal inertia)	sCO2 transient response seen as faster than steam (lower inertias)		
Installation	80MWth reactors are to be installed as close as possible to end users (industries,), sometimes in remote areas	Absence of water use for cooling or make-up water reduces installation constraints and increases resiliency		



sCO₂ development for NAAREA (1/2)

R&D :

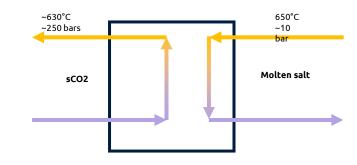
- Salt-sCO₂ interaction (calculations, tests)
 Potential specific sCO₂ material corrosion tests
- sCO₂ steady and transient model :
 - Definition of design parameters vs techno-economic optima :
 - Turbine inlet temperature vs material costs
 - Compressor inlet temperature vs dry cooling surface vs hot day performance
 - Recuperator pinch vs cost
 - Strategies for main transient and accidental conditions :
 - Reactor shutdown (avoid salt freeze)
 - Turbine trip / load rejection : no power extraction from reactor
 - Coupled reactor + turbine control
 - Client load following (heat & electricity)

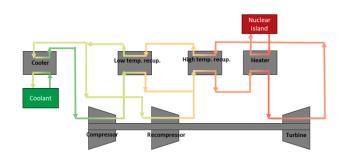
sCO₂ development for NAAREA (2/2)

• Overall integration :

- NAAREA positioned as EPC & operator
- Turbomachinery, heat exchangers and other equipment designed and manufactured by dedicated suppliers

• Main challenges :


- Demonstration of techno-economic competitivity : difficulty in projecting equipment CAPEX & OPEX for series production
- No off-the-shelf solutions available for turbomachinery and heat exchangers : specific FEED studies & supply chain development



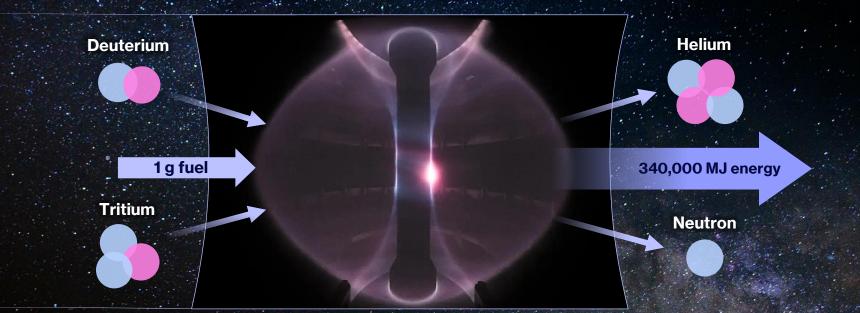
Focus on MSR specific challenge : salt-sCO₂ heat exchanger

- At the crossroad of multiple challenges :
 - Corrosion resistance :
 - Molten salts corrode most alloys (highly dependent on salt purity)
 - Chloride salts are especially aggressive
 - sCO₂ has specific high temperature corrosion mechanisms (carburisation, ...)
 - High pressure and high temperatures
 - Compacity and costs
 - Manufacturability
 - Salt side must be drainable

Thank you for your attention

ETN PRESENTATION FUSION ENERGY AND THE ROLE OF SCO₂

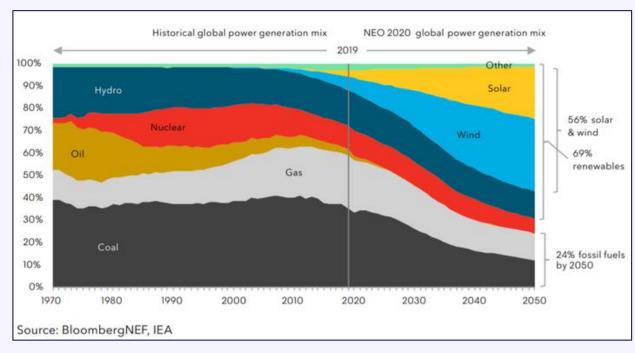
FOR PUBLIC USE


UKAEA - STEP - Power & Cooling

Jack Acres

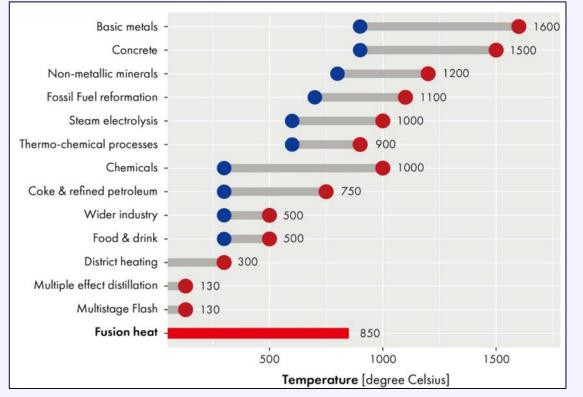
OFFICIAL - PUBLIC

WHAT IS FUSION


Fusion is the process that powers the sun and stars by fusing hydrogen nuclei at the core...

 ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow n (14.1 MeV) + {}_{2}^{4}He (3.5 MeV)$

... unlike its fission counterpart, fusion relies on fusing two lighter atomic particles. The mass deficit of the subatomic particles releases energy (e=mc2)


WHY FUSION? FUSION POWER IN A GLOBAL DEMAND FOR CLEAN ENERGY

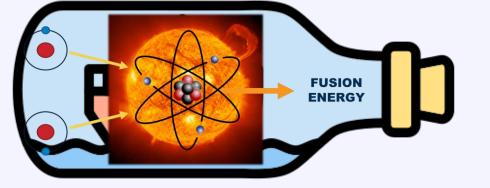
GLOBAL ELECTRICITY MIX

New Energy Outlook Projects Massive Energy Sector Shift Through 2050 - forbes.com - Robert Rapier https://www.forbes.com/sites/rrapier/2020/10/31/new-energy-outlook-projects-massive-energy-sector-shift-through-2050/

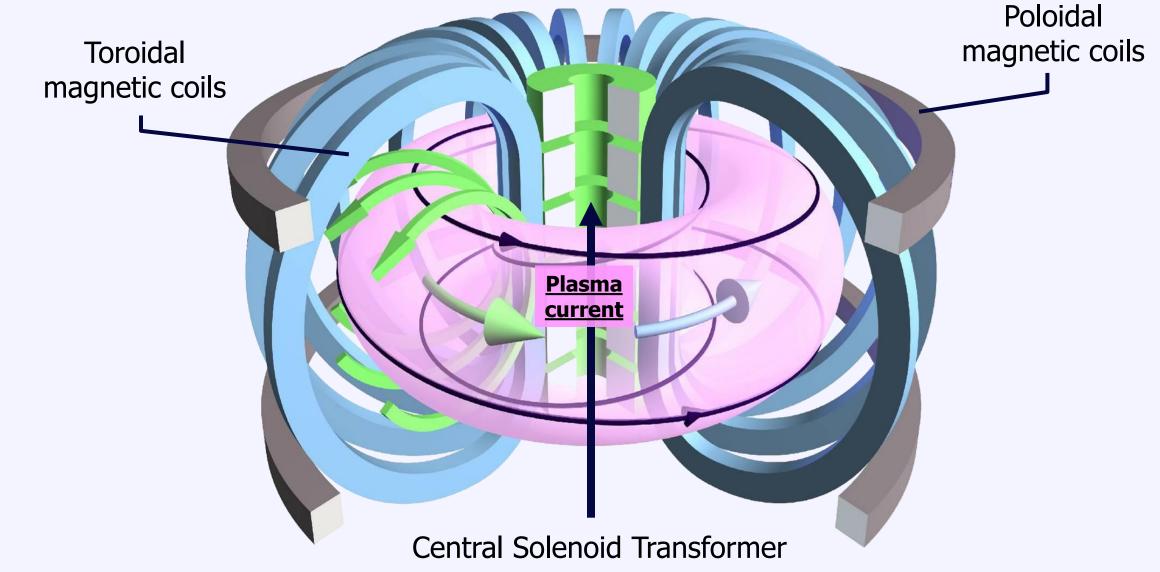
TEMPERATURE DISTRIBUTION OF HEAT DRIVEN INDUSTRIAL PROCESSES

The commercialisation of fusion for the energy market: a review of socio-economic studies Thomas Griffiths, Richard Pearson, Michael Bluck and Shutaro Takeda

A GLOBAL DEMAND FOR RELIABLE, DISPATCHABLE, AND SAFE CLEAN ENERGY – ALLOWING US TO REACH NET ZERO


HOW TO DO FUSION: FUSION ON EARTH

Fusion in the sun occurs at immense pressures and temperatures. At these conditions, the hydrogen is in a "plasma" state (ionised and stripped of its electron).


Recreating fusion on earth requires:

- High vacuum to remove impurities and cooling effect
- Very high temperatures, 10x higher than the centre of the sun, due to lower achievable plasma pressures (100-150 Million °C)
- Deuterium and tritium. Deuterium is widely available naturally. Tritium will need to be bred locally to sustain the high energy value of the D-T reaction

THIS IS ACHIEVED BY USING VARIOUS CONFINEMENT TECHNIQUES SUCH AS MAGNETIC AND/OR INERTIAL CONFINEMENT

HOW TO DO FUSION: THE TOKAMAK

WHO IS DOING FUSION: GLOBAL FUSION ROADMAP 2020 2030 2040 2050 DEMO ITER **POWER PLANTS EXPERIMENTAL DEVICES STEP JET** Inertial Laser Spherical Tokamak Inertial Laser Focused Energy Commonwealth Xcimer Energy Inc. **Fusion Systems** Magnetic Mirror Spherical Tokamak DOE BOLD Realta Fusion Tokamak Energy Inc. JT-60SA DECADAL VISION & others Stellarator supporting ITER... Z-pinch **MAST-U** Stellarator **Princeton Stellarators** Zap Energy Inc. Type One Energy Inc. OFFICIAL - PUBLIC Group U

WHAT IS STEP?

MISSION TO FUSION

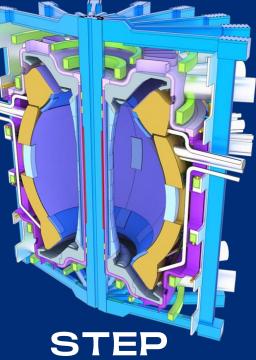
DELIVER A UK PROTOTYPE FUSION ENERGY PLANT, TARGETING 2040, AND A PATH TO COMMERCIAL VIABILITY OF FUSION.

STEP MISSION

WHAT IS STEP?

SPHERICAL TOKAMAK FOR ENERGY PRODUCTION

A pioneering, prototype fusion powerplant that will demonstrate:

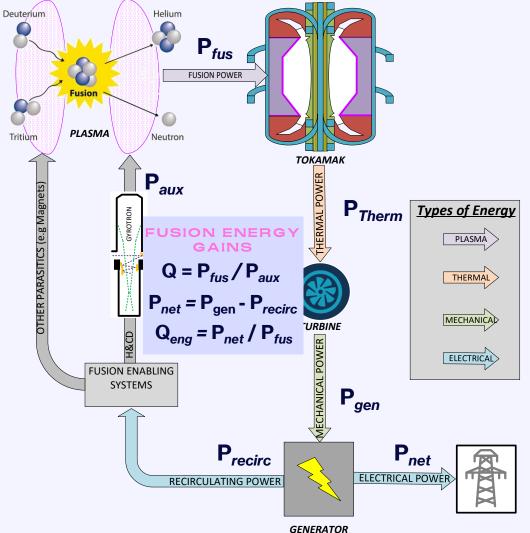

- net energy,
- fuel self-sufficiency
- maintainability of fusion power plants
- a route to the commercial viability of fusion

STEP has progressed through five Concept Maturity Level reviews and three independent Fusion Technical Advisory Group reviews.

STEP will be delivered in 3 phases:

Phase 1 – develop concept design and select a site
Phase 2 – detailed engineering design and permissions and consents as well as pre-construction works by early 2030s
Phase 3 – manufacturing and construction – targeting operations around 2040.

SPHERICAL TOKAMAK BASIS



- Cored apple shape
- Novel exhaust options Super-X Divertor
- Fewer, smaller magnets
- Smaller buildings
- Lower costs due to compact
 nature

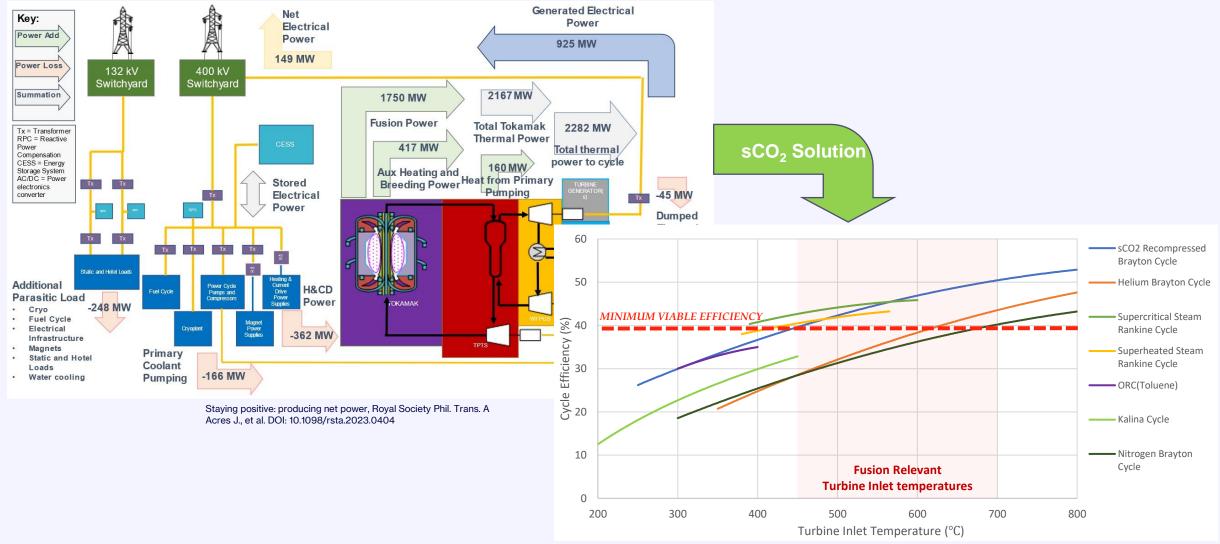
THE STEP POWERPLANT

MAGNETICALLY CONFINED FUSION A UNIQUE POWER SOURCE

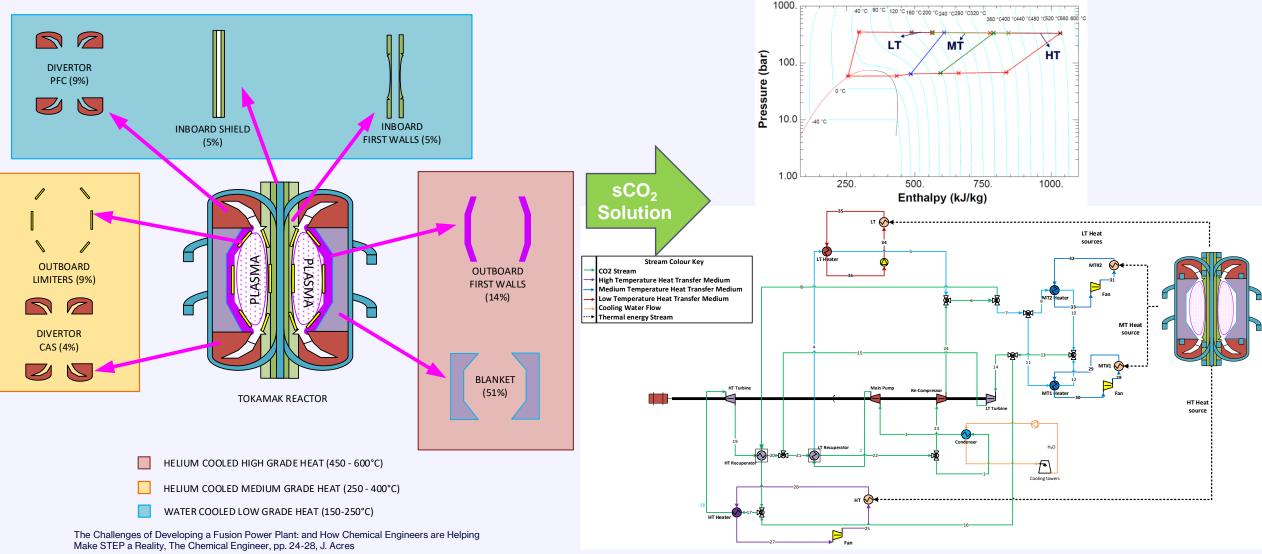
GT2024-126730 Fusion Energy and Future Fusion Power Plants, ASME Turbo Expo 2024 Jack Acres, Chris Clements; https://doi.org/10.1115/GT2024-126730

4 KEY CHALLENGES UNIQUE TO FUSION POWER GENERATION:

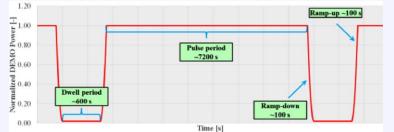
Challenge 1: Need for efficiency



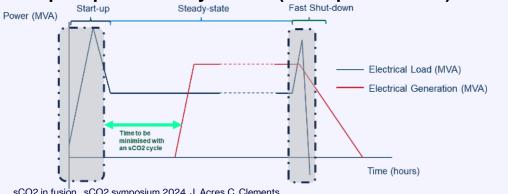
Challenge 3: Need for flexibility


NEED FOR EFFICIENCY: DRIVEN BY THE POWER BALANCE

OFFICIAL - PUBLIC


Staying positive: producing net power, Royal Society Phil. Trans. A Acres J., et al. DOI: 10.1098/rsta.2023.0404

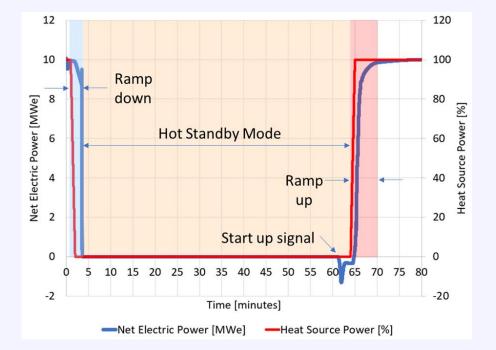
NEED FOR HEAT INTEGRATION DRIVEN BY THE TOKAMAK ARCHITECTURE


NEED FOR FLEXIBILITY DRIVEN BY THE TOKAMAK OPERATIONS

1. Inherently pulsed

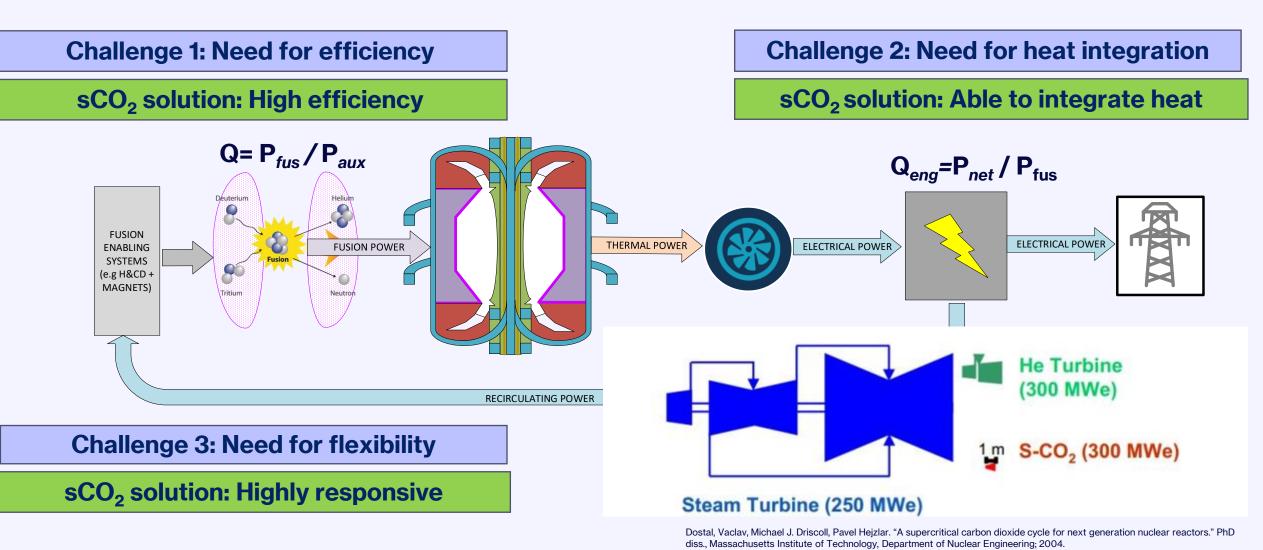

Maturation of critical technologies for the DEMO balance of plant systems, Fusion Engineering and Design, Volume 179, 2022; L. Barucca et al.

2. Rapid operational dynamics (startup/shut down)


sCO2 in fusion, sCO2 symposium 2024, J. Acres C. Clements https://sco2symposium.com/proceedings2024/chris-clements-jake-acres.pdf

3. Prototypic operations

OFFICIAL - PUBLIC



Rapid ramp rates of the sCO₂ power cycle could effectively support challenging operating scenarios

Evaluation on the rapidity of sCO2 cycle power up and down events using the STEP dynamic simulation model, sCO2 Symposium 2024 M. McDowell, J. Acres https://sco2symposium.com/proceedings2024/59-paper.pdf

SCO2 UNIQUELY POISED TO ANSWER FUSION POWER GENERATION CHALLENGES?

OFFICIAL - PUBLIC

THANK YOU, ANY QUESTIONS?

JACK.ACRES@UKAEA.UK

Thank you and see you next time!

Question / comments? js@etn.global