Reducing Carbon Emissions in Gas Turbines using BASF OASE® Blue Technology

ETN Global - Webinar

June 2024

Carbon Emission in Gas Turbines

- Power generation → biggest contributor of CO₂
 - Coal and natural gas based
- Increasing investment in LNG projects → drive to produce carbon neutral LNG
- Shift to low carbon power generation → integration of CCS is critical
- Solvent based CO₂ capture is the most proven technology for CCS

Natural Gas Combined Cycle (NGCC) Plant

Coal-based Power Plant

OASE® technologies
have been capturing
carbon amongst
other things since 1971

white

yellow

sulfexx™

Ammonia, Syngas

Sulfur Selective

Super Selective

purple

blue

green

Natural Gas, LNG

Flue Gas

Biogas

Joint-development with JGC

FLEXSORB™

Strategic alliance with ExxonMobil

OASE blue ® Technology

- Solvent-based CO₂ capture technology
 - package of technology, solvent and services
 - Low regeneration energy & solvent make up

- Knowhow derived from +500 reference plants using OASE® technologies
- CO₂ capture from various flue gas applications:
 - Fossil fuel power generation
 - Cement / steel plant
 - ► SMR H₂ plant
 - Boilers

Key Needs for Post-combustion CO₂ Capture

Industry needs

- Proven technology
- High capture rates
- Low energy & amine consumption
- Low environmental impact

- Digitalization & operator friendliness
- Wide applicability
- Scaling & modularization
- Secure solvent supply

BASF OASE® blue technology offering

- ⇒ Commercial references + over 65,000 hours of testing
- \Rightarrow CO₂ Removal Rate (**up to 99%**)
- ⇒ 2.5 3.0 GJ/to_{CO2} / with solvent make up rate of~0.3 0.6 kg_{amine}/to_{CO2}
- ⇒ **OASE**® **aerozone** (Patented aerosol / emissions reduction zone)
- ⇒ Proven reclaimer concept
- ⇒ Nitrosamines management
- ⇒ **OASE**® **connect** (Design Software / Operators Training / Analytical DB)
- ⇒ **OASE**® **digilab** (Analyzer combined with OASE® connect)
- \Rightarrow Tested range O₂ (4 16 v%) / CO₂ (4 25 v%) / CO₂
- ⇒ Easily scaled & modularized
- ⇒ Large scale solvent production

OASE® blue Flow Scheme

Challenges: Flue Gas Composition

- \blacksquare Low CO₂ / O₂ ratio
 - ► Lower CO₂ kinetics
 - ► Higher degradation rate
 - Oxidative versus thermal degradation
 - OPEX consideration

- OASE blue versus MEA
 - Minimum 20% saving in regeneration energy
 - > 70% make up rate saving

Flue Gas	NGCC	Coal based power
Source	Natural gas	Pulverised coal
CO ₂ (mol%)	3 - 6	12 - 15
O ₂ (mol%)	10 – 16	3 - 8
Major impurities	NO_x	NO _x / Sulfur / Acidic Components / Metals
Dust /Aerosols	No / moderate	Yes

Regeneration energy & make up rate comparison

Challenges: Capture Rate Efficiency

- Shifting capture rate benchmark to > 90%
- Major impacts to solvent-based CO₂ capture unit
 - Higher reboiler duty & cooling load
 - ► Higher solvent circulation flowrate
 - ▶ Bigger absorber diameter

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at what cost? International Journal of Greenhouse Gas Control, 105, 103239.

- Theoretical study based on 30 wt% MEA
 - ▶ 90 98% capture → utility cost (OPEX)
 - ➤ Above 98% capture → absorber diameter (CAPEX)

Energy Reduction Potential

- 1 Compression train heat recovery
- 2 Lean vapor compression
- 3 Waste heat integration

- Regeneration efficiency saving
 between 0.2 0.5 GJ / tonne CO₂
- Saving of 0.1 GJ / tonne of CO₂ in
 1100 MWel plant
 - ~ 37 tonnes of LP steam / hour
 - ~ 0.5 % of electrical power plant output

How to Increase CO₂ in Flue Gas?

Supplemental firing

- Combustion of additional fuel at outlet of GT
- Reduces O₂ and increases CO₂ to 10 mol%
- Challenge: Higher T at inlet of HRSG affects material selection

Exhaust gas recirculation (EGR)

- Recycle portion of flue gas to compressor inlet
- Reduces O₂ and increases CO₂ to 6.5 mol%, limited by 40% EGR ratio
- Challenge: flame stability in combustor

Selective EGR with CO2 membrane

- Install CO₂ membrane to further concentrate CO₂. Combustion air not diluted with N₂
- Increases CO₂ to 14-18 mol% & maintain 16 mol% O2 at inlet combustor
- Challenge: increasing operational complexity, reducing flexibility

1500 TPD CO₂ capture plant
OASE blue technology
Increases CO₂ from **4 to 8 mol**%
Decreases O₂ from **13 to 7 mol**%

Key Takeways

Challenges

- Low CO_2/O_2 ratio in CCGT
- Higher solvent degradation
 rate → OPEX
- Higher CO₂ capture rate requirement

High Performance

- Significant energy saving over MEA solvent
- CO₂ capture rate up to 99% with CO₂ product purity exceeds 99%

Optimization

- Various energy reduction options within CCS flowsheet
- Allows significant savings on CAPEX and OPEX to enable CCS implementation

We create chemistry

