Event sponsors Host **Energy Group** #### **Exhibitors** ### Report from the Chairs on takeaways/actions # Outcomes of the session – Digitalisation and diagnostic | Topic | Outcome of the discussion | Action | |-------------------------------------|---|---| | Technical session | Make the best use of data you already have, using matured techniques Al/digital solutions are widely investigated, but not widely deployed | See row below on WG | | WG on digitalisation and diagnostic | Instrumentation for operation and maintenance operation Machine Learning / AI Development of Digital Twins Data Management Cyber security Sensors for instrumentation for GT development | Identify volunteers in your organisation (also young engineers) Write chapter of Working Group (scope, objectives, timeline) Organise monthly/bimonthly meetings to kick-off activities | ### Outcomes of the session – More efficient and/or innovative cycles (1) | Topic | Outcome of the discussion | Action | |--|---|---| | Flexibility of Gas
Turbines as they
start more times
and run fewer
hours (utility) | Many more starts per year and fewer running hours as VRE penetration increases. The more efficient power plants will participate in the market for more hours. Optimization of starts, reducing start-up time and having better ramp-up rates. Part load vs peak efficiency, minimum load. | - Understand effect on CCGT, compare flexibility of different solutions for bottoming cycle | # Outcomes of the session – More efficient and/or innovative cycles (2) | Topic | Outcome of the discussion | Action | |---|--|---| | Use of alternative fuels to decarbonize | While decarbonizing with AFs, fuel flexibility is of utmost importance. Need to develop combustion systems that can deal with different fuels and at different percentages. | Explore options in conjuntction with
H2 WG Evaluate indirect fired cycles for
implementation of multi fuel | | Decarbonization of off-shore platforms | Minimize weight and footprint. Options: Conventional/Innovative Bottom Cycles Reducing the weight of HX. EGR for enabling cost effective CCS. Lighter CCS High Efficient Air Filtration System (1% to 3% emission reduction) | Re-run the off-shore sCO2 case using data approved by technology provider with confidence ranges instead of literature data Compare existing / ongoing eveluations | #### Outcomes of the session – Product circularity | Торіс | Outcome of the discussion | Action | |---|--|--| | High temperature alloy for AM | Modification of traditional alloys
underperform compared to state-of-the-
art materials Investigation of new alloy composition
but need for developing a structure to
characterize them | Establish a framework for assessing and comprehending new superalloys Additional testing and experiments for new alloys required | | Manufacturing of structures (different organisations, same specs) | Similar mechanical properties as expected (defects at cooling holes) Differences within same organization due to calibration of machines Production of the sets different amongst organizations. | Definition of quality control procedures Get insights into how AM machines work Any organisation can join the consortium, inform ETN | | AM projects | Agreement to launch new projects (Non-
Destructive Testing, Machine Control
Framework for LBPF) | Meeting in April to decide new project | #### Outcomes of the session – Low carbon 🕏 solutions (1) | Topic | Outcome of the discussion | Action | |---|---|--| | Slido ranking of
the task forces
of the H2 WG | Topics of interest are well covered by the WG Ranking results were Project database H2 report update Ammonia / alternative fuels Iron combustion as possible new topic | Send a reminder to the members to fill the database Contact selected members for their input to the H2 report | 4 April 2024 #### Outcomes of the session – Low carbon 🕏 solutions (2) | Topic | Outcome of the discussion | Action | |---|--|---| | Slido ranking of
possible CCS
topics to be
followed up | With work on operational flexibility and knowledge sharing the task force is on the right track Possible new topics are 1. Integration with CCGT 2. Exhaust gas recirculation | New topics will be shared with CCS task force | | Presentation of
Jon Runyon
about Uniper
CCS projects | The operation of a CCS plant differs significantly from a CCGT plant There is a competence gap in what is needed for the operation of such a plant | The topic will be taken to the CCS task force | 4 April 2024 #### Outcomes of the session – Product reliability | Topic | Outcome of the discussion | Action | |---|---|--| | Rotor lifetime Inspection and evaluation | Procedure for onsite testing of parts, extracting material properties and evaluating degradation Small punch testing aligned with micro-sampling devices Rotor integrity and life (end of life) | assessment (on-site inspection)? - How about welded rotor? Other | | Hot gas part degradation TBC state-of-art & evaluation | - Degradation and failure
modes of TBC was
presented (experience
shared by Juelich
Forschungszentrum) | i G | #### Outcomes of the session – Integrated energy systems | Topic | Outcome of the discussion | Action | |------------------------------|---|---| | Discussion on the objectives | - Gaps to close | | | Open
discussion | Comparison metric with RES: Levelized Cost of Reliable Electricity (CAPEX) Necessity of pre-engineered solutions Scenarios Flexible heat to power ratio Energy storage (electricity, heat, gas) | Consider the open questions in the WG new activity Get more active partners/members involved to solve the highlighted issues | 4 April 2024