

The Power of Data in the GT Industry: How to Get Most of it?

Herwart Hönen

h_hoenen@hoenen-cs.de

Mature vs. Advanced Sensors

Better information about the condition of the machine => More instrumentation can create additional data

Are advanced techniques always the appropriate solution?

Mature vs. Advanced Sensors

Better information about the condition of the machine => More instrumentation can create additional data

Are advanced techniques always the appropriate solution?

Mature Measuring Techniques

- Robust
- > Reliable
- Cheap
- Easy to handle

Advanced Measuring Techniques

- Sensitive
- Limited long term stability
- > Expensive

Can existing measuring data or additional mature techniques be used/applied to provide the required information?

Standard Instrumentation

Available information from the machine

- Standard measurements
 - Aero-thermodynamic data (steady)
 - Vibration / stress data (steady & unsteady)
 - Power output/input
 - Rotor speed
- Mature and reliable measuring techniques (wall pressures, pressure & temperature rakes, accelerometers, etc.)
- Cheap
- > Robust

Necessary for control of operating point

Basis for decision: Required monitoring results

- Possiblity to obtain the information from existing aero-thermo dynamic data
 - Correlation of data / results
 - Making use of performance maps of compressor & turbine
 - Application of 1D calculation tools
 - New algorithms
 - Application of 2D CFD
 - Others (i.e Al)

Examples

Calculation of total pressures in stages based on mass flow + static wall pressures

Total pressure in stages

stage performance

Flow angles in stages

- stage performance
- localisation of affected stages

Creating Additional Data by Additional (Mature) Sensors

Basis for decision: Required monitoring results

- Possibilities for additional (mature) instrumentation in the machine
 - Standard measuring techniques
 - Enhanced standard measuring techniques (considering harsh environment)

Steady (eg. as replaced borescope plugs)

- Additional pneumatic wall pressure taps
- Thermo-couples for (material) temperature measurements
- ➤ Additional total pressure rakes & probes
- Total temperature rakes & probes

Unsteady (eg. as replaced borescope plugs)

- Dynamic pressure sensors at side walls
- Dynamic total pressure probes

Examples for Implemented (Mature) Techniques in GTs

Combustion fluctuations

Wish for advanced instrumentation from customer:

High temperature dynamic pressure sensors for combustion chamber

Problems:

- Availability (time frame)
- Long term robustness
- Cost (e.g. fiber optic sensors & electronics)

Alternative solution:

- Noise measurements outside combustion chamber
- Extraction of signal portions due to combustion fluctuations by ANNs

Advantages:

- Immediately applicable
- Robust
- Reliable
- Cheap

Examples for Implemented (Mature) Techniques in GTs

Detection/Prediction of Rotating Stall & Surge

Wish for advanced instrumentation from customer:

High temperature dynamic pressure sensors for rear compressor stages

Problems:

- Long term robustness
- Cost (e.g. fiber optic sensors & electronics)

Alternative solution:

- Piezo-electric sensors + cooling adaptors
- Judgement of aerodynamic load by pattern recognition with ANNs

Advantages:

- Immediately applicable
- Robust
- Reliable
- Cheap

Surge Detection in a Gas Turbine Compressor

Dynamic pressure sensors in a GT compressor stage

- Development of the pressure signals for different compressor loads
- Analysis of the patterns by an ANN

Early warning/alarm possible

Timely Limited Additional (Mature) Instrumentation

Pneumatic pressure & total temperature probes

Flow field measurements inside stages

- Pressure & temperature distributions
- Flow angle distributions
- Flow velocity distributions

Data base of flow properties

Application of ANN to generate correlations beetween flow properties and data from standard instrumentation

Example:

Pneumatic 5-hole probe in a jet engine compressor

Correlation between flow field data and airfoil wear

Target: Better decision about maintenance/refurbishment

Conclusion

Advanced information from the machine

- Additional measuring locations throughout the machine (information from stages / stage groups)
- Application of probes / rakes inside machine (information about losses)
- > Implementation of dynamic sensors in rakes / probes (unsteady flow behavior as an indicator for problems)
- > Application of advanced analysis techniques (improving the value of measuring data)

The potential of existing / additional mature measuring techniques should be utilized by application of

- New / advanced analysis algorithms
- > Artificial intelligence

Advanced (sensitive) sensors should preferably be applied in test facilities

- Generation of data bases for the application of above algorithms
- Generation of knowledge about dependencies between flow properties and measuring data