

R&D activities on sCO₂ in Europe (and beyond) Balance of Plant

Sixth episode – 14 February 2024

This webinar is in cooperation with 9 European R&D projects

COMPASSCO,

CARBOSOLA

sCO₂-Efekt

Webinar content & speakers

- View of impacts on CAPEX and plant feasibility (Matteo Baggiani – SIME)
- Large scale CO₂ heat-pumps for decarbonizing heat and cold and for electricity storage (LDES) (Raymond C. Decorvet – MAN Energy Solutions)
- Transforming Natural Gas into Clean Power (Xijia Lu – NET Power)
- STEP Pilot Plant Inventory Management System (Joshua Warren – Southwest Research Institute)

Webinar moderators

Marco Ruggiero (Baker Hughes)

Jitka Špolcová (ETN Global)

What is the first application that comes to your mind when you think about sCO2? (1-2 words)

What is the first item you think of when BoP is mentioned? (1-2 words)

Supercritical **CO2** power cycles demonstration in **O**perational environment **L**ocally valorising industrial Waste **HEAT**

BALANCE OF THE PLANT: A VIEW OF IMPACTS ON CAPEX AND ON PLANT FEASIBILITY

Matteo Baggiani -14/02/24

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022831

000

000

Consortium

CO20LHEAT brought together a consortium composed of **21 stakeholders** with complementary expertise from 10 European countries

- **Companies**: 13 Enterprises •
- Academia: 3 research and technology organisations, 4 universities ٠
- Other: 1 association

The Balance of the Plant

- 1. HTF System
- 2. Inventory System
- 3. General Auxiliaries
- 4. Interconnections

All of potential installation site of technology are existing Plants having some heat to be recovered...

BROWN FIELD

- Congested footprint
- Old infrastructures (specifically electrical & tech gas distribution)
- Lack of Water Availability (for cooling)
- Difficulties in Tie-In location

Design of the BOP can make the difference

First Example: The Plant & The Layout

Second Example: The Plant & The Layout

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022831

CO2OLHEA

535

Examples Comparisons

Topic/Detail	Plant #1	Plant #2
Layout		
Distance between WHRU & Plant+Aux	60m	20m
Space for Plant+ Aux	1200 m ²	1000 m ²
Utilities @ Plant Area		
Compressed Air availability	No	No
Nitrogen availability	No	No
Fire Fighting System availability	No	Yes
Cooling Water availability	No	No
Electrical BOP		
Electrical Room Space availability	No	No
Control Room Space availability	No	Yes
BOP CAPEX IMPACT*	1	0,7

Calculates as: BOP IMPACT = Plant x % of CAPEX / Plan #1 % of CAPEX

Other potential Issues and Tips...

Issues	Tips
 Connection to the Grid (Production vs Use of Generated Power) 	Is there needs to have Inventory? How is the status of the electrical grid around the plant?
 Safety/Environmental Constraints: Venting CO2 + High Pressure Pipes 	Existing Cold Flare? / Existing HP Gas systems in the plant?
 Installation Time vs Plant planned shutdown 	Modular Pre-Assemble &
4. Access and Logistic	Pre-Tested Plant Design
ed funding from the European Union's Horizon 2020 research and inpovation program	

100

This project has

Conclusions: An Advices List...

- 1. Prepare a check list when visiting the plant
- 2. Cooperate with the Client to gain the most from existing structures
- 3. Maximize Modularization and Footprint flexibility
- 4. Keep everything close by
- 5. Include in the evaluation what's beyond the fence (Electrical Grid, Road Access, etc.)

Large scale CO₂ heat-pumps for decarbonizing heat and cold and for electricity storage (LDES)

Raymond.Decorvet@man-es.com Global Business Development ETES

MAN Energy Solutions @ a Glance

Vision:

Building on our unique range of capabilities, we create pioneering solutions to master the business, technical, and operational challenges of decarbonization.

We enable customers to achieve sustainable value creation in the transition towards a carbon neutral future.

New forward strategy

Large HT Heat-Pumps

Carbon Capture (CCS)

Hydrogen (H2)

Climate Change & Global Warming is happening!

Decarbonisation & CO₂ reduction is <u>THE</u> option !

Ways forward towards decarbonisation

- Reduce energy consumption
- Increase energy efficiency
- Sector Coupling
- Invest in proven and mature technologies now that support climate goals
 - renewables
 - heat-pumps
 - energy storage (LDES)

14.02.24

Heat-Pump technology is relevant for the power sector

- Energy Transition
 Decarbonize heat & cold production (Power-to-H&C)
- Energy Crisis

 - Grid balancing Primary Reserve (+/- >8MWel in <30 sec.)</p>
- Electricity Storage → MAN ETES (Electro Thermal Electricity Storage / Carnot Battery)

Energy transition – Decarbonizing heat & cold production

Power-to-Heat and Power-to-Cold

Process industry – Yes, heat-pumps can !

<mark>20 – 200°</mark>C

Sector	D	Temperature (°C)									
	Process	20	40	60	80	100	120	140	160	180	20
Sec. maral	Make-up water			_	-						
Several	Preheating				-	+					
sectors	Washing	1			+	<					
Chemicals	Biochemical react.	_		-							
	Distillation						_	11			
	Compression					1			-		
	Cooking										
	Thickening										
	Blanching							11			
	Scalding		-								
	Evaporating										
	Cooking										
E	Pasteurisation				-						
Food &	Smoking				-						
Beverages	Cleaning				-						
	Sterilisation										_
	Tempering	_			-	1					_
	Drying				-	i –		11	-		
	Washing		-		-	1		Η	- i-		_
	Bleaching										_
0	De-Inking			_		1					
Paper	Cooking					1	_				
	Drying	_			+						
	Pickling							+ +			_
	Chromatiing					+ -		+ +		_	_
	Degreasing				-			++			_
Fabricated	Electroplating				-	-		+ +		_	_
metal	Phosphating	_	-		-	-					_
	Purging										-
	Drying				+						
Rubber &	Drying		-					11			
Plastic	Preheating					1					
Machinery &	Surface treatment										
Equipment	Cleaning										
	Bleaching										
Totto	Coloring										
extres	Drying										_
	Washing										
	Steaming				-			+ +			
	Pickling			_							-
	Compression				-	1			_		-
					-						-
	Drving										—

Source: ResearchGate

MAN-ES CO₂ heat-pump / ETES at a glance

- Thermal output: 50 MW_{th} heat + 30 MW_{th} cold / per day with one Heat-Pump-Unit (HPU)
- ETES power Storage (LDES): up to 200MWh/day
- Thermal storage for more flexibility
- Cost savings: Charging / Discharging (arbitrage)
- Temperature levels 0° 150+ °C → ideal for sector coupling (e.g. district heating & process industry)
- COP >5 7 (heat + cold)
- Lifetime: +35 years
- NO efficiency degradation during lifetime

Heat-Pump charging cycle for storage, heat & cold generation

Discharging cycle for electricity re-generation

System Flexibility & Scalability

Base System Configuration Options

MAN ETES

- Heat pump
- Storage
- Re-electrification

Supply:

- Electricity (primary)
- Heat & cold (0° 150°C)
- Heat & cold storage (0° 150°C)

MAN ETES "light"

- Heat pump
- Storage

Supply:

Heat & cold

- (0° 150°C)
- Heat & cold storage (0° 150°C)

(3 Compressor sizes: 2 – 16MW electrical input)

MAN Heat Pump

• Heat pump

Supply: (7x24)Heat & cold

(0° - 150°C)

How much time it takes to bring the water of a Olympic sized swimming pool to boiling point?

- Length: 50m
- Width: 25m
- Depth: 2m
- Water: 2.5 million litres
- 20°C

< 4 hours

Transcritical CO₂ (TCC) heat-pump design

Transcritical CO₂ (TCC) heat-pump design

Compressor (HOFIM)

- Electricity input 5 / 9 /16 MWel
- Magnetic bearings (= no lube oil)
- Hermetically sealed (= no leakage)
- Integrated high-speed motor (10'000 – 18'000 rpm)
- \succ Reduced footprint (2/3)
- ➢ Up to 220 bar
- Thermal output: up to 50 MW_{th} heat + 30 MW_{th} cold per unit per day
- CO₂ (R744) as refrigerant
- Temperature levels 0° 150+ °C
- Lifetime: +35 years

Heat sources for MAN heat-pumps

Source: lghvacstory.com

(Waste-)Water / liquid

Geothermal

Industry waste heat

Πh

HOFIM Compressor for CO₂ (TCC) heat-pumps

High Speed Oil Free Integrated Motor compressor HOFIM™

- Reduced footprint (max. 4m x 8m)
- Integrated high-speed motor (10'000-18'000 rpm)
- No gearbox \rightarrow noise reduction (ca. 90 dB)
- No lubrication oil due to magnetic bearings
- Hermetically sealed No leakage / loss of refrigerant

Compression with HOFIM™

High speed Oil Free Integrated Motor compressor

- Barrel compressor
- Highspeed motor
- Cooled by process gas heat losses reintroduced into process
- Running on active magnetic bearings
- Reduced auxiliaries increased reliability
- Fully electric remote control
- Hermetically sealed no emissions
- Overall cost optimization through reduced footprint & weight
- Sizes: 2 18 MW electrical input
The heart of the system: HOFIM[®] with integrated expander

Heat-Pumps based on MAN HOFIM[™] compressor technology enable fast grid balancing in <30 sec.

Additional revenue per year (200 days)										
		FCR	a	FRR cap	a	aFRR ava	ć	aFRR act		Total
Belgium	€	536'800	€	17'600	€	16'800	€	84'000	€	655'200
Austria	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Switzerland	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Germany	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Netherlands	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Slovenia	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Denmark	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
Czech Republic	€	421'600	€	17'600	€	16'800	€	84'000	€	540'000
France	€	381'600	€	17'600	€	16'800	€	84'000	€	500'000

- Increase & decrease el. power consumption in < 30sec by +/- 30% during heat supply</p>
- Run DH stable operation down to 20% of the nominal duty with thermal storage as buffer

World's first of its kind

MAN's Subsea HOFIM[™] in operation since **September 2015**

140'000+ operating hours / 100% reliability

AkerSolutions

equinor

Link to animation

Itions

Åsgard Subsea Compression

- Water depth 300 m
- Gas pressure 220 bar
- Power rating 2 x 11.5 MW

Esbjerg (DK) Project – Largest CO₂ Heat-Pump ever built !

Heat-Pump building

209 2024

Going operational

Project drivers:

Green energy transition: From coal to RES & HPs
District heating for 25'000 households (100'000 citizens)
CO₂ savings:100'000 t / year = ~55'000 cars

Kobmandssand

AN-ES USPs:

CO₂ as refrigerant – natural gas / environmentally friendly
High lift – from 1°C seawater to 90°C forward temp.
2 Heat-Pumps with 25MWth each (2x 11.5MWel input)
HOFIM Compressor – magnetic bearings / hermetically sealed

Fremtidens Fjernvarme

District heating of the future

- Forward temperatures to DHN 70-90°C
- Return temperatures 33° 39°C
- COP 3.3 (winter) 3.5 4 (summer)
- Heat-Pumps: 2x 25MWth / 2x 11.5MWel input

Sea water Intake/outlet

50MW

- From turndown 50% to 100% in <30sec.
- 4000 litre of water per second / 1.2m Ø pipes

Seawater outlet temperatures

-1 – 18°C

Seawater inlet temperatures

 $1 - 20^{\circ}C$

16

MAN Compressor in factory

MAN Compressor @ site in Esbjerg

CO₂ storage tank

WEL 50.000 KG MAN

MAN Energy Solutions

MAN wins second in a row seawater heat-pump project !

Forsyning

- 3 seawater CO_2 heat-pumps (option for 4th)
- 134 MW thermal output (~ 44 MW thermal each)
- ~ 14+ MW electrical input per compressor
- 40'000 m³ thermal storage
- Going operational April 2027

MAN scope of works

Project scope

MAN Energy Solutions delivery

- Compressor unit
- Heat Exchanger (Condenser) on hot side
- Evaporator on cold side
- Complete piping and steel structure
- Refrgerant tank
 - Valves, instrumentation, connecting cables, DHN water pumps, seawater pumps
 - Complete electrical scope
 - Complete control system
 - FAT of main equipment
 - Installation and commissioning
 - On site testing

Typical scope of delivery

Grid, heat-sink and heat-source connection

Civil work (e.g. roads, buildings)

Thanks for your attention.

Raymond.Decorvet@man-es.com Global Business Development ETES

Transforming Natural Gas into Clean Power 2024 ETN Global sCO2 Balance of Plant webinar

NET Power decarbonizes natural gas power generation

NET Power's power plant transforms natural gas into clean, emission-free power

NET Power Overview

- Who we are: NET Power is a US-based clean energy technology company that has developed a gas-based power plant that generates clean power with near-zero emissions
- Innovative design: NET Power's patented technology employs oxy-combustion and utilizes supercritical CO₂ as the turbine's working fluid to efficiently produce clean, low-cost power and deliver a pure stream of CO₂ for sequestration or utilization
- Proven technology: Demonstration plant in La Porte, TX (50 MWth) was commissioned in 2018 and has achieved over 1,500 operational hours and synchronized to the Texas grid in 2021
- Preparing for global deployment: Agreement with Baker Hughes to design and manufacture key plant equipment; expect first deliveries in 2026-2027; standardized design enables economies of scale and rapid deployment
- Several projects in various stages of development, first utility-scale plant expected online in 2027-2028
- Positioning for long-term success: NET Power went public in June 2023 and successful energy entrepreneur Danny Rice became NET Power's CEO

Strategic Shareholders

NET Power's innovation harnesses CO₂ for clean power

Patented power cycle that avoids the creation of criteria pollutants and captures nearly all carbon emissions

NET Power Cycle Overview

- NET Power's platform uses a semi-closed loop cycle that inherently captures CO₂ and produces power
- It does so by combining two processes: oxy-combustion, which produces CO₂ and H₂O, with a CO₂ power cycle
- The CO₂ from oxy-combustion is recirculated back to the combustor and a portion (~850k tonnes CO₂ per year) is exported for utilization or sequestration

NET Power Cycle Steps

- Air Separation Unit separates oxygen from air
- 2 Natural gas and oxygen combine resulting in CO₂ and water vapor
- 3 The CO₂ mixture expands and turns the turboexpander to generate electricity
- 4 The CO_2 mixture goes into the heat exchanger to cool
- **(5)** Water is removed from the CO₂
- \bigcirc CO₂ is repressurized, captured CO₂ is exported for sequestration or commercial use
- **7** Recirculated CO_2 is reheated to be used again in the process

NET Power's test facility validates and de-risks the technology

Three separate testing campaigns completed between 2018-2021 provide technology validation

Facility Overview

- 50 MWth industrial scale (5-acre footprint)
- Commissioned March 2018 with >1,500-hrs runtime
- Initially designed to validate, de-risk NET Power Cycle
- Currently upgrading to support Baker Hughes technology demonstration in parallel with utility-scale program

Key Accomplishments

- sCO₂ turbine generated power while synchronized to grid
- NET Power's controls architecture optimized. Multiple 24hour test campaigns (completed 2018-2021) including start/stop sequences, steady state and ramping operations.
- Facility exceeded 925°C design temperature and 300 bar pressure. Heat exchanger performance tested at temperatures meeting and exceeding required benchmarks.

Baker-Hughes provides critical expertise and equipment

Turboexpander architecture leverages decades of Baker Hughes experience across its technology portfolio and installed fleet

Technology & Commercial Development

NET Power and Baker Hughes partnered to advance the system integration process design of the NET Power Technology and bring the technology to market

Key Process Equipment & Services

Baker Hughes will supply key equipment and services for NET Power Plants including:

- Turboexpander & Combustor
- Key pumps and compressors
- Additional BOP equipment
- Equipment Service Agreements

sCO2 Turboexpander

+008

300+

World's first supercritical CO₂ turboexpander designed for high temperature (~1,000°C), high pressure (330 bar), and CO₂ as working fluid.

Gas

Turbines

Centrifugal

Compressors

5,000+

8,000+

Technology Test Campaign

Preliminary process safety analysis for future validation completed for plant modifications

Combustor component testing commencing in 2024

Demonstration and utility-scale combustor can testing in 2025

Demonstration turboexpander testing expected in 2026

Test Campaign Preparation Activities

Relocation of recycle CO₂ compressor

Relocated and converting to electric drive from prior shaft-driven configuration

Piping & instrumentation enhancements

Optimizing plant controls and data acquisition instrumentation

Updates to distributed control system

Implementation of advanced control narratives for demonstration

Concurrent product development and demonstration accelerate commercialization

Process & Equipment Development

- Cycle optimization
- Utility-scale plant design
- Baker Hughes (BH) equipment
- Validation & demonstration strategy

Demonstration

- La Porte test facility modifications
- BH combustor demonstration
- BH turboexpander demonstration
- Controls refinement

Utility-Scale Deployment

- Integrated FEED
- Detailed design
- Construction & commissioning
- Performance validation

NET Power's supply chain strategy supports ramp-up in deployments

Air Separation Unit

- Licensed supplier approach with world class suppliers
- Provision of both Sale of Equipment and Sale of Gas options to drive price transparency and improve project economics

Modularization

- Licensed modularization suppliers for supply of integrated equipment, structural steel, piping, electrical, etc.
- Enables a "manufacturing mode" supply chain approach with diversity of supply

Sepc

ZACHRY

- Future licensed and pre-qualified world class EPC providers identified through FEED
- Protects NPWR IP and enables common standard design across multiple EPC's
- Engineering, craft labor, and schedule reduced to enable robust delivery growth

Project Permian: The first utility-scale NET Power Plant

Project goal is to demonstrate clean, reliable and safe operations

Project Permian Background

- 250 MW plant to be located near Midland-Odessa, Texas with existing gas, power and CO₂ infrastructure
- FEED work with Zachry commenced in Q1 2023 and is expected to conclude in 2H 2024
- Submitted interconnection application in ERCOT
- Captured CO₂ will be tied into Oxy's extensive CO₂ network in West Texas

Supportive Investors and Strategic Partners

De-risked SN1 Location

Project Permian location de-risks first-of-a-kind utility-scale deployment:

- Access to abundant, low-cost natural gas
- High visibility into CO₂ and power offtake and necessary permitting
- Goal: Safe, reliable operations at utility-scale

1H 2024: Release initial long-lead equipment orders

2H 2027 / 1H 2028: Initial power generation

Anticipated Project Timeline

NET Power Delivers the Energy Trifecta

CLEAN

AFFORDABLE

RELIABLE

24 hours/day, 7 days/week

Baseload, dispatchable, and peaking capabilities complement variable renewable generation for a more robust and resilient electric grid

Competitive power production

State-of-the-art modularized standard design reduces costs and maximizes returns. Small footprint, high efficiency.

High carbon capture capability

97%+ inherent carbon capture generating pipeline-ready CO₂ through patented oxy-combustion process

STEP Pilot Plant Inventory Management System

ETN BOP Webinar Feb. 14, 2024

Joshua Warren Senior Research Engineer

SwRI is an Applied Research & Development Company

- Founded in 1947, based in San Antonio, Texas
- 501 (c)(3) nonprofit corporation
 - Internal research
 - New laboratories
- ~\$726M annual revenue

Industry and government contracts

- Over 2,700 employees
- I,500+ acre campus
- Customer-Centric IP policy
- Deep Sea to Deep Space[®]...and everything in between

Alvin Pressure Hull

Pluto from New Horizons Spacecraft

SwRI's Roles in the STEP Pilot Plant Project

- The STEP Demo is a project funded by DOE NETL and led by GTI Energy in partnership with SwRI and GE Global Research
 - 10 MWe sCO2 Pilot Plant,
 - TRL3 to TRL7
 - \$156M Budget over 7 Years
- SwRI Roles:
 - Host site
 - System integration and operation
 - Data acquisition & controls
 - Piping
 - Inventory Management System
 - Turbine design & fabrication (with GE)
 - Heater protection valve
- Mechanical completion Oct 2023
- Simple Cycle commissioning and testing through ~Mar 2024

Recompression Closed Brayton Cycle

Objectives •High performance cycle configuration

•Turbine inlet up to **715°C**

- •Parallel compressors with different head curves
- Multiple Heat Exchangers
- •Measure system and component performance

•Evaluate operability

•Demonstrate pathway to 50% thermal efficiency

©SOUTHWEST RESEARCH INSTITUTE

Why have an IMS?

Controls the amount of CO2 in the system (which affects system load)
Responsible for initial fill of system
Supports Auxiliary systems like Dry Gas Seals (DGS)
Can enable fast transitions between load points

Model Names	Cycle Configuration	Description	Load %	Net Power Level (MWe)	Cooler Exit Temperature	Turbine Inlet Temperature	Cycle Efficiency	
133	Simple	Simple cycle minimum load case	Min	2.5	35°C	500°C	22.6%	
136	Simple	Simple cycle maximum load case	Max	6.4	35°C	500°C	28.3%	
151	Recompression	Baseline case	100%	10.0	35°C	715°C	43.4%	
152	Recompression	"Hot" Day Case	70%	6.6	50°C	675°C	37.4%	
153	Recompression	"Cold" Day Case	100%	9.9	20°C	525°C	36.8%	
154	Recompression	Partial load case using inventory control	40%	4.0	35°C	715°C	37.0%	
155	Recompression	RCBC at 500°C turbine inlet temperature	70%	6.9	35°C	500°C	32.5%	
157	Recompression	Partial load case using TSV throttling (transient condition)	40%	4.2	35°C	715°C	30.8%	
157a	Recompression	Partial load case using TSV throttling	40%	3.9	35°C	675°C	29.6%	

Inventory Management System

Primary Functions of IMS
Liquid supply and fill system
Inventory control
DGS Supply
Other auxiliary supplies

©SOUTHWEST RESEARCH INSTITUTE

Liquid Storage and Fill System

swri.org

Fill System

- 30 Ton liquid storage tank
- Dual redundant liquid pump system
 - Sizing has to match vaporizer duty or use VFD to meet required outlet temp to process
- Process vaporizer to provide vapor
 > 40°C

Sizing of fill system is a critical input for plant depressurized startup times

Inventory Storage and Control

9

Inventory Control

- Allows movement of CO2 from the process to the storage tanks and back
- Flow Drivers:
 - Natural Pressure Differential
 - Pumping system or small compressor
- Temperature of storage tanks has significant effect on capacity

DGS Supply

11

DGS Supply

- During operation this segment is passive as compressor discharge provides DGS supply flow
- Buffer tank acts as an accumulator or run-down tank during transients and shutdown process
- Boost pumps provide pressure increase to drive flow during pressurized holds

Questions?

Thank you!

Joshua Warren Senior Research Engineer Machinery Department Mechanical Engineering Division

(210) 522-5847

6220 Culebra Road San Antonio, Texas 78238-5166

Thank you and see you next time!

Question / comments? js@etn.global