HYDROGEN AND HYDROGEN BLENDED FLOX® COMBUSTION IN A TURBEC T100 MICRO GAS TURBINE COMBUSTOR

<u>F. Grimm</u>, T. Lingstädt*, T. Kathrotia, R. Banihabib, M. Assadi, P. Kutne**, A. Huber *timo.lingstaedt@dlr.de

**peter.kutne@dlr.de

10/11/2023

123rf.com

123rf.com

Micro Gas Turbine

Contents

- Background / Motivation
- Retrofit Setup T100 MGT with DLR Burner
- Study Results
 - Numerical (CFD) Simulation
 - Experiments
- Conclusion / Outlook

- Retrofit: Existing burner F400s.3, evaluated with hydrogen
 - F: FLOX®, 400: kW thermal, s: synthetic gas
 - Developed for 7 49 MJ/kg
 - Air-fuel ratios 1.5 3.6
- Combustor adaption: More air for combustion, less dilution

- T100 Gas Turbine operated at University of Stavanger
- Remote operation support from DLR

AFN: Air fuel number

Retrofit Setup – T100 MGT with DLR Burner CFD Simulation

- 60° segment, 7.7m points, 44m tet elements
- ThetaCOM inhouse CFD
- Incompressible RANS with FRC chemistry
- DLR Concise reaction mechanism with NOx pathways

Contents

- Background / Motivation
- Retrofit Setup T100 MGT with DLR Burner
- Study Results
 - Numerical (CFD) Simulation
 - Experiments
- Conclusion / Outlook

Study Results – JaRS Combustion

Study Results – JaRS Combustion

Study Results – CFD Field Solution

Study Results – CFD Field Solution

Study Results – Emission Measurements (NOx)

NOx [ppm]			Vol% H2																	
El. Power [kW]		20	34	47	52	57	63	67	71	74	78	81	83	85	88	90	93	95	97	99
	35	12.21	24.41	24.41	20.91	30.89	6.43	6.28	6.12	5.44	15.30	15.05	15.15	11.90	7.93	8.08	7.86	15.64	15.84	23.80
	50	22.72	30.44	31.17	33.15	38.82	8.71	8.33	8.24	7.63	19.83	23.17	23.80	17.37	17.05	20.26	17.95	25.30	22.05	33.06
	70	34.73	39.42	41.02	41.02	50.64	13.22	15.69	16.23	16.60	27.77	31.04	31.06	27.50	25.50	28.86	26.85	33.47	34.74	46.97
	80	40.83	43.44	47.11	47.10	55.78	17.72	20.70	20.70	21.16	32.45	35.16	36.04	32.60	30.58	34.00	32.08	41.74	42.59	52.25
	90	49.40	48.36	53.67	51.73	64.26	22.34	24.53	25.01	25.29	35.95	39.32	42.84	37.55	35.38	38.58	39.57	45.53	54.24	58.37
	100	54.49	53.89	59.05	64.08	70.94	25.63	28.47	29.17	29.75	42.26	45.86	46.84	41.78	42.50	45.21	46.69	51.39	60.83	65.53
	ATC = 38.3%					ATC = 47.2%														

Study Results – Emission Measurements (CO)

CO [ppm]		Vol% H2																		
El. Power [kW]		20	34	47	52	57	63	67	71	74	78	81	83	85	88	90	93	95	97	99
	35	717	336	153	99.7	65	740	562	408	289	163	112	97.4	101	64.9	55.1	52.4	34.3	19.3	7.68
	50	243	111	51	31.2	19.8	334	223	140	101	70.2	47	41.8	41.8	35.4	22.5	21.6	13.7	10.5	3.48
	70	63.1	34.3	20.3	15.2	10.1	124	81.1	67.6	55.3	34	25.9	23.2	16.8	14.7	11.9	12.2	9.3	6.43	3.13
	80	32.7	30.7	17	14.9	9.92	78.5	56.9	44	39.7	24.3	18.9	16.8	13.6	11.1	11.3	8.75	5.92	6.04	3.02
	90	20.2	17.8	14	14.6	9.52	46.1	36.4	31.6	27.3	15.2	10.3	10.6	10.6	8.04	8.15	5.53	4.19	2.77	0
	100	19.6	18	11.4	9.15	6.87	27.5	23.3	23.3	16.7	9.71	7.44	7.6	7.6	5.15	5.2	5.34	2.7	1.33	0
	ATC = 38.3%					ATC = 47.2%														

Study Results – Evaluation of NOx prediction

Contents

- Background / Motivation
- Retrofit Setup T100 MGT with DLR Burner
- Study Results
 - Numerical (CFD) Simulation
 - Experiments
- Conclusion / Outlook

Conclusion / Outlook

- Highly promising retrofit of H2 in our F400s.3 combustor
 - Stable combustion with flame lift-off consistently
 - Emissions in range of existing requirements
 - CFD captures emissions and trends
- Currently: Development and testing of F400h.1
 - Successor to F400s.3 but optimization w.r.t. hydrogen
 - Improving mixing \rightarrow less hot spot concentration \rightarrow lower NOx
 - Test of different staging concepts \rightarrow load variation to improve NOx and CO
 - ATM testing in Sept. 2023
 - T100 testing in 2024

Hydrogen and Hydrogen Blended Jet and Recirculation Stabilized Combustion in a Turbec T100 Micro Gas Turbine Combustor

<u>F. Grimm</u>, T. Lingstädt*, T. Kathrotia, R. Banihabib, M. Assadi, P. Kutne**, A. Huber *timo.lingstaedt@dlr.de **peter.kutne@dlr.de

Backup

Air frac. Comb. (ATC)	H2 Vol%	El. Power	AFN Glob.	AFN Comb.
47.20%	100%	100kW	8.34	3.94
	100%	70kW	9.12	4.30
	67%	100kW	7.36	3.47
	67%	70kW	8.04	3.80
38.30%	14%	100kW	8.06	3.09
	14%	70kW	8.81	3.37
	3%	100kW	7.13	2.73
	3%	70kW	7.79	2.99

AFN: Air fuel ratio