

Assessing Gas Turbine Fleet Readiness for a Low-Carbon Future

Hydrogen Fueling

Jim Harper Mitch Webb Rob Steele Bobby Noble

11th International Gas Turbine Conference October 10-11, 2023 Brussels, Belgium

Background

- Carbon Reduction Goals are forcing fleet owners to evaluate options
- Hydrogen Capability is not a single answer of current or future capability
- Practical evaluation of all aspects of capability is important for informed decisions
- This work provides a template of considerations in evaluating gas turbine fleets for hydrogen fueling

Research Goals

- Develop a list of considerations plant owners need to consider in a hydrogen upgrade
- Focus on existing turbines
- More detailed then typically provided by OEMs in conference environments
- Less detailed than a full detailed quote
- General enough to be valuable for all land-based GTs
- Detailed enough to provide insight into questions which need more thorough investigations

Site Topics

Assessing GT Asset Needs for Low-Carbon Plans

Safety, Codes, Procedures and Training

- Material Selection and Component Design Requirements
- Procedure Updates
 - Commissioning
 - Startup and shutdown
 - Pressure and leak testing
 - Gas line Flushing / Cleanliness
 - Purging and Gas charging

Pre-Design work – Feasibility/FEED Studies & Analysis

Emissions Regulations

- Regulations Changing (min Hydrogen usage, CO₂ limits)
- Hydrogen
 - Impacts NOx volume Based Corrections
 - Impacts Mass Based Calculations

\underline{F}_{d} will change as the fuel blend changes

Hydrogen GT Impacts Summary

Major Takeaways

Parameter	Effect of Increasing H ₂
Load	
Firing Temperature	
Heat Rate	
Total Fuel Flow (Mass)	
CPR	
Mass Flow Rate (Inlet), Compressor Power Draw	
Mass Flow Rate (Exhaust), Turbine Power	
CO ₂	
H ₂ O, O ₂	

Unit Topics

Performance and Efficiency

 Hydrogen Blending will impact Power, Heat Rate, Exhaust Flow and Component heat transfer via changes in exhaust products

Fuel Delivery

Fuel Delivery

1.0000
0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250
0

Volume Fraction of Hydrogen []

While Fuel Delivery Systems may get more complex, hydrogen and NG mixing could be simple

Even without dedicated Mixing design, simulation suggests simple blending mixes NG and hydrogen quickly

Material Impact and Selection with Hydrogen

EPCI

Source of Hydrogen will impact Fuel Delivery Controls and Demands Hydrogen Temperatures 3. Ambient Heat Transfer

Hydrogen Temperature change with compression/ expansion, JT, and **Ambient Heat Transfer**

Ambient Heat Transfer and Local H₂ storage may mean H2 temperature is a strong function of tank pressure, flow rate, GT pressure, and time

1.10

0.75/

time (min

2 1.04 1.00

Leak Detection, Inert Purging, Venting, Gas Charging

Hydrogen impacts operations before startup and during fueling

Combustion System – Design: Emissions, Dynamics and Flameholding Example Design Progression resulting in

- Emissions may drive design changes
- Flameholding/Flashback prevention
 - Change in heat release, combustion properties may result in design change
- Combustion Dynamics / Control
 - Change in design and heat release may result in combustion dynamics changes

temperature and flow field changes

(NOT REPRESENTATIVE OF ANY PARTICULAR DESIGN)

Fuel Composition Impact on Fuel Nozzle Pressure Ratio "Effective Area" $MWI = \frac{LHV}{\sqrt{SG * T_a}}$

- Effective Area is a measure of useful flow area
- Relates the fuel and fuel composition to the mass flow and pressure drop
- Related to the MWI through fuel composition and fuel Temperature
- Effective area flow relationship shown to the right
- Can be used to calculate flow and nozzle pressure ratio impact of fuel composition changes

$$\dot{m} = \frac{A_e P_1}{P_R} \sqrt{\frac{2}{RT} \left(\frac{\gamma}{\gamma - 1}\right) P_R^{\frac{\gamma - 1}{\gamma}} \left(1 + \left(\frac{1}{P_R}\right)^{\frac{\gamma - 1}{\gamma}}\right)}$$

- Where
 - m is mass flow through the component (Fuel Orifice)
 - Ae is the "effective area" of the component
 - P₁ upstream pressure of component
 - P_R pressure ratio across component
 - γ Ratio of specific heats
 - R Specific Gas Constant; R= 287 Pa*m^3*K
 - T Compressor Exit Temperature (K)

Combustion System – Other Components Potential Updates

- Coatings
 - May change based on new flame structures
- Liner/Transition Piece
 Length / Diameter
 - Based on hydrogen flame speed may need to be changed
- Combustor Pressure Drop
 - May require changes to account for updated performance and turbine cooling requirements

Control System

Gas Turbine Combustion System Commissioning

Gas Turbine Metric	Turbine Operating Temperature	Flame Tuning Through Fuel Splits
Performance	Proportional	Negligible Impact
Operability	Impact if Lowered Too Much	Direct Impact
NOx	Proportional (Exponential)	Direct Impact (tune specific)
СО	Inversely Proportional (strongly Exponential)	Direct Impact (tune specific)

Hydrogen Impacts all Metrics

Together...Shaping the Future of Energy®

I/O Updates

- Valves
- H2 Analyzers, Chromatographs/Wobbe
- Flow Meters: Mass/Volume
- LEL / H₂ leak detectors
- New Gas/Blend Pressure / Temperature

EPSI

Blending and Fuel Control Updates

- Blending control / Fuel Scheduling
 - Fuel Mode control with Blends
 - Manage instrumentation and valve feedback
 - Blend Control during all operation
- Fuel Gas Purging

EPRI

EPRI.com

EPRI.com is our online resource to support your business needs

Resources Include:

- Program Overviews and Research Project Progress
- Results to fit your needs:
 - Reports
 - Guidelines
 - Databases

– Training Modules

EPCI

- Tools
- Videos

- Software
- Events, Webcasts, and Collaboration Spaces
- Email Subscriptions, Announcements, and News
- Supplemental Project Opportunities
- <u>A Personal Dashboard</u> where you can subscribe to email notifications, favorite EPRI content, and register for events.

Log-In today to get started!

For questions or website assistance, please contact EPRI Customer Assistance Center (CAC) at <u>askepri@epri.com</u> or 800-313-3774, option 4.

