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ABSTRACT 

Due to the requirement of reducing CO2 emissions and 

achieving sustainability in the energy sector, it is essential 

to integrate renewable energy sources with controllable 

generators and energy storage systems into multi-energy 

systems. This study aims to optimize the design and 

operation of a multi-energy system for a medium-sized 

airport with high reliability requirements. The design of the 

system has been optimized with the code developed by 

Politecnico di Milano for aggregated energy systems 

(microgrids, energy districts, CHP systems, virtual power 

plants, etc). The code determines the optimal selection, 

sizing, and operation of units based on expected hourly 

energy demand profiles of the airport's users, PV production 

potential, costs, and performance curves of available 

generators. The code can include a wide range of reliability 

constraints (N-1 reliability, spinning reserve, etc.) and 

optimize the sizing and management of the electric vehicle 

charging infrastructure. The catalogue of units includes 

CHP gas turbines, heat pumps, PV, and battery and thermal 

energy storage systems. The study shows the effectiveness of 

the optimal design code in dealing with real-world 

problems. 

 

INTRODUCTION 

In recent years, policies aimed at reducing carbon 

dioxide (CO2) emissions and the consumption of fossil fuels 

in the energy sector have been gaining momentum. 

According to the International Energy Agency (2021b) an 

immediate action is required to achieve the goal of net-zero 

emissions by 2050, which is necessary to limit global 

warming to 1.5°C above pre-industrial levels. 

Solar energy (PV) and wind are the most commonly 

used renewable sources due to their availability and 

relatively low cost of electricity. However, the intermittent 

nature of these sources poses the need to install flexible 

dispatchable generators and/or energy storages to ensure a 

reliable energy supply. 

In this context, Multi-energy systems (MES) and 

microgrids (MG), here called “Aggregated Energy 

Systems” (AES), are emerging as key elements of the future 

energy transition, being an effective solution to integrate 

distributed renewable energy sources (RES) with 

controllable generators and energy storage systems (IEA, 

2017). These systems, which can operate both in grid-

connected and islanded mode, can provide different energy 

vectors, such as electricity and heat, to the final users in a 

synergistic way, and can be used for a range of industrial 

and civil facilities, including airports, hospitals, and 

schools. 

The rule of thumbs, design criteria and operating modes 

developed for conventional centralized energy systems are 

not applicable to multi-energy systems due to the elevated 

number of units involved, their potential interactions and the 

variety of possible configurations. Therefore, the optimal 

design and operation of microgrids needs to be addressed by 

using mathematical optimization techniques. Among these 

techniques, those based on mixed-integer linear 

programming (MILP) formulations represent the state of the 

art because of the following key advantages: (i) they can 

properly model the combinatorial nature of the problem 

(units selection and on/off operation), (ii) they can be solved 

using branch-and-bound solvers with proved global 

convergence properties, (iii) commercially available MILP 

solvers can solve large scale problems (with thousands of 

constraints and variables) within practical times. In the last 

ten years, Politecnico di Milano has developed a MILP-

based code for the systematic design optimization of 

different types of aggregated energy systems. 

For example, Zatti et al. (2017) proposed a three-stage 

stochastic MILP model to tackle the design of smart energy 

districts, which includes electricity and heat storage, 

conversion, and distribution systems, under uncertainty. 

Gabrielli et al. (2018) presented a novel MILP formulation 

for the optimal design and operation of multi-energy 

systems involving seasonal energy storage. Zatti et al. 

(2019b) optimized the design and operation of a multi-

energy system for a multiple-site university campus using a 

new clustering approach named k-MILP. The method 

provides the typical and extreme days of the year, setting a 
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maximum tolerance on the integral of the load duration 

curves. Castelli et al. (2022) optimized the design and 

operation of a fully renewable multi-energy system 

minimizing the total annual cost. The investigated MES 

integrates H2-fired combined cycles, PV panels, 

electrolyzers, batteries for short-term storage, and H2 

seasonal storage. 

In a recent research project, the AES design 

optimization code developed by the GECOS group (Group 

of Energy Conversion Systems) of Politecnico di Milano 

has been applied to gas-turbine-based microgrids in 

collaboration with Baker Hughes. In particular, the project 

has investigated off-grid applications typical of the oil & gas 

industry with high reliability requirements, and industrial 

case studies. This work reports the application to the design 

of an aggregated energy system serving an airport with high 

reliability requirements. The objective is to find the optimal 

design which minimizes the total annual cost, including 

capital and operational costs, while ensuring reliable and 

continuous energy supply to the airport. The case study is 

designed to represent an average airport with electrical and 

thermal demand that serves about 71 million passengers 

annually and is located at middle latitudes with an annual 

average solar irradiance of approximately 1780 kWh/m2. 

The airport is designed to receive and charge approx. 1.1 

million electric vehicles per year with smart charging 

stations. The catalogue of generators includes combined 

heat and power (CHP) gas turbines. In addition, it can also 

install a variable-size heat pump, photovoltaic, and battery 

and thermal energy storage systems (BESS and TES). A 

schematic representation of the AES is reported in Figure 1. 

To have a N-1 reliability of the airport power supply, the 

AES must meet the airport's electrical demand in case of 

failure of one generator using proper spinning-reserve 

constraints and spare units installation. The MILP model 

allows for optimal sizing of the charging station while 

optimally scheduling the charge of the EVs, thus 

considering the potential for demand side management. 

 

NOMENCLATURE 

AES Aggregated energy system 

BESS Battery energy storage system 

BH Baker Hughes 

CHP Combined Heat and Power 

CRF Capital recovery factor 

EV Electric vehicles 

MG Microgrid 

MILP Mixed-integer linear programming 

MES Multi-energy system 

PV Photovoltaic 

RES Renewable Energy Sources 

SAM System Advisor Model 

SOC State of Charge 

TAC Total Annual Cost 

TES Thermal Energy Storage 

 

FORMULATION OF THE OPTIMIZATION 

PROBLEM AND SYSTEM ASSUMPIONS 

The optimization problem is a two-stage stochastic 

program that combines two steps: (i) the design stage, where 

the decisions on the type and size of units are made and (ii) 

the operation stage, where the optimal scheduling of the set 

of units selected in the previous stage is evaluated, and units 

status (i.e. on/off) and operative loads are determined. 

As for the time-variable yearly profiles, the electricity 

demand, which encompasses the airport services, has been 

found to have an average of 22.3 MWe and a peak of 

60 MWe. The monthly average profiles used are those of the 

Incheon Airport located in Seoul (Baek et al., 2016). 

Furthermore, the PV production and ambient temperature 

profiles have been extracted from the System Advisor 

Model (SAM) database for the Incheon Airport in 2019 

(NREL, 2020). On the other hand, the thermal heat demand 

yearly profile, which has a peak of 27.9 MWth, has been 

estimated by multiplying the difference between the internal 

and external ambient temperature with an assumed 

proportionality constant. Additionally, the passenger arrival 

and departure profiles, utilized to calculate the EV arrival 

and departure schedule, have been assumed identical to 

those of the Incheon Airport in 2019. The representation of 

the time-variable yearly profiles is reported in Figure 2. 

To reduce computational complexity, the AES 

operation is optimized for a representative subset of days, 

as the problem's complexity grows exponentially with the 

number of time steps. To identify these representative days, 

a k-medoids clustering algorithm is applied to the yearly 

profiles, considering a one-hour time step (Zatti et al., 

2019b). Six "typical" days are selected for optimization 

purposes, which can adequately capture the system's 

behaviour under varying conditions. Each typical day 

represents a set of real days of the year. Additionally, to test 

the microgrid's robustness, the operation is also optimized 

for six "extreme" days that correspond to specific scenarios 

of interest, such as maximum and minimum hourly ambient 

temperature, maximum hourly PV production, minimum 

average daily PV production, and maximum peaks of 

electric and heat demand. 
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Figure 1. Schematic representation of the investigated aggregated energy system. 

Problem Statement 

The optimization problem can be stated as follows. 

Given: 

• The expected time-varying profiles of the energy 

demands (e.g. heat and electricity) over the 

optimization time horizon. 

• The expected time-varying meteorological data (PV 

production and ambient temperature). 

• The expected time-varying prices for purchasing and 

selling electricity (only in the grid-connected case). 

• The expected costs of fuel and the carbon tax value. 

• Performance and cost data of dispatchable units (CHP 

gas turbines and heat pump), storage systems (batteries 

and thermal energy storage), and not-dispatchable 

sources (PV). 

• The expected lifetime and the relevant financial and 

economic parameters of the system. 

• The limits on the flexible loads (EVs). 

 

Determine the following decision variables: 

• The dispatchable and not-dispatchable units and 

storages to install (1st stage decision). 

• The optimal sizes of the selected units and storage 

systems (1st stage decision). 

• The optimal size of the charging station (1st stage 

decision). 

• The commitment status (i.e. on/off, start-up, 

showdown) of selected units (2nd stage decision). 

• The optimal scheduling of units (i.e. generation/load, 

energy exchanges) in each timestep (2nd stage 

decision). 

• The fuel and electricity power imported/exported (2nd 

stage decision). 

• The optimal fraction of dispatchable loads (EVs) met in 

each time period (2nd stage decision). 

• Storages management (i.e. charge/discharge power, 

energy level) in each timestep (2nd stage decision). 

The objective is to minimize the total annual cost (TAC) 

while ensuring the energy balance and the other constraints. 

The TAC [$/y] is calculated as: 

𝑇𝐴𝐶 = 𝐶𝑅𝐹 ∙ ∑ 𝐶𝑖𝑛𝑣 + ∑ 𝐶𝑂&𝑀
𝑓𝑖𝑥

+ ∑ �̃�𝑆𝐶 ∙12
𝑠𝑐=1

(𝐶𝑂&𝑀,𝑠𝑐
𝑣𝑎𝑟  + 𝐶𝑓𝑢𝑒𝑙,𝑠𝑐 + 𝐶𝐶𝑎𝑟𝑏𝑜𝑛𝑡𝑎𝑥,𝑠𝑐 + 𝐶𝑔𝑟𝑖𝑑,𝑠𝑐

𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒
+

− 𝑅𝑔𝑟𝑖𝑑,𝑠𝑐
𝑒𝑥𝑝𝑜𝑟𝑡

)  

(1) 

Where CRF is the capital recovery factor, assumed 

equal to 10%. 𝐶𝑖𝑛𝑣 is the investment cost of the installed 

units [$]. 𝐶𝑂&𝑀
𝑓𝑖𝑥

 and 𝐶𝑂&𝑀 
𝑣𝑎𝑟 represent the fixed and variable 

O&M costs, respectively. 𝐶𝑂&𝑀 
𝑣𝑎𝑟 , expressed in [$/day], also 

includes the start-up cost of the generators. �̃�𝑆𝐶  indicates the 

occurrence probability associated with each scenarios 𝑠𝑐 

(“typical” and “extreme” days). The six clustered “typical” 

days have an occurrence which depends on how many real 

days belong to their cluster, while the six “extreme” days 

occur only once a year. 𝐶𝑓𝑢𝑒𝑙,𝑠𝑐 and 𝐶𝐶𝑎𝑟𝑏𝑜𝑛𝑡𝑎𝑥,𝑠𝑐 represent 

the cost associated to the fuel expenses and the carbon tax, 

respectively. Lastly, 𝐶𝑔𝑟𝑖𝑑,𝑠𝑐
𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

 denotes the cost for the 

electricity imported from the grid, while 𝑅𝑔𝑟𝑖𝑑,𝑠𝑐
𝑒𝑥𝑝𝑜𝑟𝑡

 stands for 

the revenue for the electricity sold to the grid. 

 

Modelling of the components 

This section will present the main assumptions and how 

the installable units in the catalogue have been modelled. 

 

CHP Gas Turbines 

Five gas turbine models, named GTurbA, GTurbB, 

GTurbC, GTurbD and GTurbE, with data taken from 

commercial software, have been selected to represent five 

different general categories of generators in terms of 

nominal power, efficiency and costs.
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Figure 2. Representation of the time-variable yearly input profiles considered in this study. 

All gas turbines in the model are arranged in the combined 

heat and power (CHP) asset, with heat recovered from the 

exhaust gas through a counter-current heat exchanger. 

The gas turbines are modelled as single input - multiple 

output machines, taking natural gas from the grid as input 

and producing electricity, heat, and CO2 emissions as 

output. To model the input/output relationship, we have 

considered a linear approximation that achieves high 

accuracy (coefficient of determination above 0.99) for gas 

turbine load between 100% and 50%. 

The model considers the off-design behaviour of gas 

turbines as a function of ambient temperature. Gas turbine 

performance maps, which show input/output relations, are 

first evaluated for discrete ambient temperature values. 

Then, linear interpolation is carried out to determine the gas 

turbine performance curve for the actual ambient 

temperature value at each time step. An example of the 

performance curves is reported in Figures 3 and 4. The 

reported performance data are normalized for the ISO 

conditions at 15°C. 

A convex-hull formulation is utilized to account for the 

input/output relationship, considering two vertexes, the 

maximum and minimum load condition: 

 

𝐹𝑢𝑒𝑙𝑖𝑛𝑝𝑢𝑡𝑚,𝑡
= α𝑚,1,𝑡 ⋅ �̃�𝑚,1 + α𝑚,2,𝑡 ⋅ �̃�𝑚,2  (2) 

𝑃𝑚,𝑡 = α𝑚,1,𝑡 ⋅ �̃�𝑚,1 + α𝑚,2,𝑡 ⋅ �̃�𝑚,2 (3) 

𝑄𝑚,𝑡 = α𝑚,1,𝑡 ⋅ �̃�𝑚,1 + α𝑚,2,𝑡 ⋅ �̃�𝑚,2 (4) 

𝑧𝑚,𝑡
𝑜𝑛 = α𝑚,1,𝑡  + α𝑚,2,𝑡 (5) 

 

Where 𝐹𝑢𝑒𝑙𝑖𝑛𝑝𝑢𝑡𝑚,𝑡
 is the fuel input of the machine 𝑚 at 

time 𝑡. α𝑚,𝑣,𝑡  is the variable that estabilishes the load of the 

machine 𝑚 at time 𝑡 for the vertex 𝑣. �̃�𝑚,1, �̃�𝑚,𝑣, and �̃�𝑚,𝑣 

represent the vertex value of fuel input F, electric power 𝑃 

and thermal power 𝑄 for the machine 𝑚, respectively. 
Similarly, 𝑃𝑚,𝑡  and 𝑄𝑚,𝑡  are the electric power and 

thermal power output of the machine 𝑚 at time 𝑡. 𝑧𝑚,𝑡
𝑜𝑛  is 

the binary variable which represent the commitment status 

(1 if turned-on, 0 if turned-off) of the machine 𝑚 at time 𝑡. 
Lastly, the gas turbines are modelled as fast machines 

without start-up/shut-down or ramp-up/ramp-down 

limitations. To provide a rough idea of the considered gas 

turbines,  some input data are approximated in Table 1, in 

p.u. with respect to a base case selected to be characterized 

by about 40 MW of nominal electrical and thermal output 

power (about 50% of the considered electrical load peak), 

40% of efficiency, 20 M$ of capital investment cost, 300 $/h 

of O&M variable cost and 3000 $/start-up of start-up costs. 

Since the focus of the paper is describing the approach based 
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on optimization, approximated data are shown for reference 

only. The MILP model can optimize the number and the 

technology of the gas turbines to be installed. Mixed 

technology solutions are also allowed. 

 

Figure 3. Electric load as a function of the fuel load. 

 

 
Figure 4. Cogenerated thermal load as a function of the fuel 

load. 

Heat Pump 

In the machine catalogue for thermal power production, 

a variable-size heat pump has been included, with a nominal 

output of 35 MWth and a COP of 3.5 at full load. The heat 

pump model is a single input - single output machine that 

uses electricity to generate heat. The performance curve for 

the heat pump at variable load is obtained from De Pasquale 

et al. (2016), assuming a linear relationship between electric 

input and thermal power output. An off-design behaviour, 

which varies with temperature, is also considered, based on 

the producer datasheet. Furthermore, the heat pump can be 

optimally sized from 1 to 10 MWe. The input/output relation 

is again modelled with a convex-hull formulation. This is 

reported by Zatti et al. (2019a), who extended the 

formulation of equations 2-5 for variable-size machines, 

considering the effect of the size on the machine efficiency. 

The investment cost is calculated using Equation 6 (Pieper 

et al., 2018), while the start-up cost is set to 40 ∙ 𝑆𝑖𝑧𝑒𝑖𝑛𝑝𝑢𝑡 

$/start-up. Additionally, an extra electricity consumption 

per start-up of 0.12 ∙ 𝑆𝑖𝑧𝑒𝑖𝑛𝑝𝑢𝑡 %/start-up is considered. 

 

𝐶𝑜𝑠𝑡𝐻𝑃 =  2.239 ∙ 𝑆𝑖𝑧𝑒𝑖𝑛𝑝𝑢𝑡 + 0.505 [𝑀$]  (6) 

PV fields 

Among the non-dispatchable units, the study includes 

three PV fields, each with a maximum capacity of 80 MW. 

The division into three fields has been employed to improve 

the reliability: in case of failure of one PV field, it can be 

backed-up by the spinning reserve and spare generator. The 

PV technology adopted is crystalline silicon with a nominal 

efficiency of 19%. The SAM software was used to simulate 

the PV system using weather data from Incheon Airport in 

2019. The input/output relationship is governed by the 

following equation: 

 

𝑂𝑢𝑡_𝑃𝑉𝑡 =  𝑃_𝑃𝑉𝑡 ∙ 𝑆𝑖𝑧𝑒𝑃𝑉  (7) 

Where 𝑃_𝑃𝑉𝑡 is the power of the PV field per unit size 

derived from the profiles at time 𝑡. 𝑆𝑖𝑧𝑒𝑃𝑉 is the variable 

that represents the size of the PV field in MW. 𝑂𝑢𝑡_𝑃𝑉𝑡  is 

the power generated by the PV field at time 𝑡. 

Economic data include a specific capital investment 

cost of 841.2 $/kW installed and O&M costs of 13.06 

$/MWp-year (IEA, 2020). 

 

Battery and thermal energy storage systems 

The model includes two types of storage systems: 

battery energy storage (BESS) and thermal energy storage 

(TES). In the case of BESS, four modules are installed to 

enhance the system's reliability. In fact, BESS is considered 

essential for providing the spinning reserve, since it reacts 

instantaneously to a system failure and also serves as a 

power bank. The performance and economic data for both 

storage technologies, which are taken from Castelli et al. 

(2022) and Zatti et al. (2019a) are presented in Table 2. 

The storage systems are modelled according to the 

following energy balances: 

 

𝑆𝑂𝐶𝑒𝑠,𝑡 = 𝑆𝑂𝐶𝑒𝑠,𝑡−1 ⋅ η̃𝑒𝑠
𝑠𝑑 + (𝑃𝑒𝑠,𝑡

𝑐ℎ ⋅ η̃𝑒𝑠
𝑐ℎ − 𝑃𝑒𝑠,𝑡

𝑑𝑖𝑠𝑐ℎ ∙

η̃𝑒𝑠
𝑑𝑖𝑠𝑐ℎ  ) ⋅ Δ𝑡  

 

(8) 

Where 𝑆𝑂𝐶𝑒𝑠,𝑡 is the state-of-charge of the storage 𝑒𝑠 at 

time 𝑡. 𝑃𝑒𝑠,𝑡
𝑐ℎ  and 𝑃𝑒𝑠,𝑡

𝑑𝑖𝑠𝑐ℎ represent the charge and discharge 

power of the storage 𝑒𝑠 at time 𝑡, respectively. 

 

Problem constraints 

A detailed illustration of the constraints utilized in the 

MILP model is not reported in this work but is instead 

available in the prior works of Politecnico di Milano (Zatti 

et al., 2019a), (Zatti et al., 2017). 
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Table 1. Approximate performance and economic input data of the gas turbine models employed in this study. 

GT Model GTurbA GTurbB GTurbC GTurbD GTurbE 

Nominal Pel [p.u.] 1.0 0.8 0.4 0.3 0.15 

Nominal ηel [%] 40 38 35 34 30 

Nominal Pth [p.u.] 1.0 0.95 0.55 0.45 0.25 

Capital investment cost [p.u.] 1.0 0.75 0.5 0.45 0.3 

O&M variable cost [p.u.] 1.0 0.7 0.5 0.4 0.25 

Start-up cost [p.u.] 1.0 0.7 0.5 0.4 0.25 

 

Table 2. Input data of storage systems. 

Technology 
BESS 

module 
TES 

Size range [MWh] 0-20 0-50 

C-rate [1/h] 1 1 

Charge efficiency (�̃�𝒆𝒔
𝒄𝒉) [%] 95 85 

Discharge efficiency (�̃�𝒆𝒔
𝒅𝒊𝒔𝒄𝒉 )[%] 95 85 

Self-discharge efficiency (�̃�𝒆𝒔
𝒔𝒅) [%] 99.995 95 

Specific investment cost [$/kWh] 420.61 21.03 

O&M variable cost [$/kWh] 0.0841 0 

 

Specific reliability constraints have been included in 

the model to ensure a reliable operation with N-1 

redundancy. In particular, the system must be designed and 

operated meeting the following class of reliability 

constraints: 

a) Instantaneous spinning reserve: in case of failure of one 

generator or PV field or BESS module, the inertia of 

the failing unit must be met by the inertia of the running 

gas turbines (here called “GT allowance”) and the 

battery. The GT allowance is set to 25% of the GT 

nominal power as a first guess, while the battery is 

assumed to react instantaneously. 

b) Reserve constraint: in the 30 minutes subsequent the 

failure, the power of the failing unit must be taken by 

ramping-up the dispatchable generators (“upward 

reserve") and/or discharging the battery. As a safety 

margin, the reserve power which can be provided by the 

battery is computed considering the current state of 

charge and a discharge time horizon of 30 minutes. 

Furthermore, the upward reserve needs to compensate 

also sudden fluctuations in PV (-20%) and electric 

power demand (+10%). 

c) Spare unit: in case of failure, the AES requires a spare 

gas turbine to be turned on and re-establish the N-1 

reserve. The spare gas turbine takes approximately 30 

minutes to start-up and reach minimum load. The 

selection of the spare generator is optimized by 

choosing from the available gas turbines in the 

catalogue while guaranteeing that the spare generator 

size is sufficiently large to replace the failing unit.  

All these constraints are formulated as mixed integer linear 

constraints and included into the AES optimization code. 

 

Modelling of the EV smart charging station 

This work presents a methodology for modelling 

electric vehicles in a microgrid with a smart charging 

approach and optimal sizing of the charging station. The 

MILP model considers the electrical demand of EVs as an 

adjustable demand that can be optimally scheduled 

(Balasubramaniam et al., 2016). The EVs' yearly time-

variable arrival and departure profiles are computed based 

on Incheon Airport's actual arrival and departure profiles. 

To simulate the number of EVs per passenger, a ratio of 0.3 

is assumed, while the proportion of EVs in the total number 

of cars is assumed to be 0.1, based on the projections for 

2030 in China (IEA, 2021a). 

The model treats each electric vehicle as a battery with 

an initial average state of charge of 20%, which needs to be 

fully charged within a maximum parking time of 24 hours, 

assuming an average battery capacity of 70 kWh. Moreover, 

the state of charge of the EVs can only increase, as the 

vehicle-to-grid (V2G) approach is not considered in this 

work. To make the model more realistic, a random 

distribution of the departure profiles of the EVs in each fleet 

has been imposed, while still respecting the overall 

departure profiles from the parking lot. 

Overall, the total power that is delivered to the charging 

station at each timestep, which is also added to the energy 

and power balance constraints, is limited by the EV's 

maximum energy level in the parking lot. In the final step, 

the size of the charging station is determined by selecting 

the highest power value delivered to the station across all 

timesteps. The cost associated with constructing the 

charging station is included in the objective function as an 

investment cost, which assumes a standard charger size of 

19.2 kW and a cost of 2.2 k$ (Khaksari et al., 2021). As a 

result, the size of the charging station is optimized to 

minimize overall costs. 

 

RESULTS 

The optimization problem for the aggregated energy 

system serving the airport was solved using the Pyomo 

environment and Gurobi (one of the most efficient MILP 
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solvers (Gurobi Optimization, 2023)). The problem was 

formulated with a relative MIP gap of 0.5%. 

The performance of the AES is optimized under two 

different conditions: (i) an off-grid scenario, where the 

microgrid must fully satisfy the electrical and thermal 

demand of the airport and the charging station while 

complying with reliability constraints; (ii) an on-grid 

scenario, where the AES can buy and sell electricity with 

the electrical grid based on market prices. Reliability 

constraints are not included as electricity can be imported 

from the grid in case of unit failure. The natural gas price 

was set to 5.5 $/GJ, reflecting a medium European price 

before 2020. Additionally, a Carbon tax value of 50 $/ton 

was considered in both scenarios. The results are compared 

to a reference non-optimized scenario in which the 

electricity is entirely purchased from the grid and the 

thermal demand is met by a boiler sized on the demand 

peak. 

 

Off-grid case: 

The optimized aggregated energy system in the off-grid 

scenario is characterized by the following optimal design: 

• Three gas turbines: 2 GTurbB operated and one 

installed as spare.  

• PV size: 48.8 MWe, equally distributed across three PV 

fields. 

• BESS size: 35.3 MWh, divided into four modules. 

• TES size: 30 MWh. 

The total annual cost of the system is estimated to be 

28.18 M$/year, with the cost of electricity being 109.58 

$/MWh. The optimal operation of the aggregated energy 

system during typical and extreme days is shown in Figure 

5, which displays cumulative electric and thermal energy 

balance plots. The vertical dashed lines separate the 

different typical and extreme days. In the electric energy 

balance plot, the black line represents the electric demand 

of the airport, while the blue line shows the total electricity 

produced for the airport and the charging station. 

The optimal design solution features only the GTurbB 

since it is characterized by the lowest specific investment 

cost (about 450 $/kWel) and one of the highest efficiencies 

among the gas turbines in the catalogue. The first GTurbB 

(GT-1) operates for 7784 hours during the year, with an 

average load of 72%. On the other hand, the second GTurbB 

(GT-2) is used only during the extreme day in which the 

electric demand peaks at 60 MWe. The spare gas turbine is 

never turned on. Moreover, the yearly gas turbine electric 

production is approximately 67% of 257.15 GWh, as shown 

in Table 3. 

Despite having a lower cost of electricity (66.2 

$/MWh) than the GTurbB gas turbine (108.8 $/MWh), the 

amount of PV installed in the AES system is relatively low 

due to several factors. Firstly, the installation of PV is 

limited by reliability constraints because the technology 

lacks a proper energy reserve like gas turbines and batteries 

and requires additional spinning reserves due to the 

uncertainty in production forecasts. 
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Figure 5. Electrical and thermal cumulative energy balance on the six typical and six extreme days for the off-grid case. 

Secondly, an increase in PV production would decrease the 

load on the gas turbine, leading to a decrease in efficiency 

and, hence, a rise in fuel consumption. Thirdly, the system 

PV plus BESS can not substitute the gas turbines, having a 

higher cost of electricity. Finally, a decrease in gas turbine 

load or switching off of the turbine would impact the 

thermal power balance, potentially requiring the installation 

of a heat pump or larger thermal energy storage system to 

maintain balance, which increases costs. Therefore, PV 

production, which is never curtailed during the year, is 

exploited mainly to charge electric vehicles during the 

central hours of the day and accounts for about 33% of the 

yearly electric production. Only in the first three typical 

days, the gas turbines are all turned off, and the entire 

electric production of the AES is due to the PV. During these 

hours, it can also be noted from the thermal energy balance 

that the heat demand is null or relatively low. 

The battery energy storage system has as a power bank 

function, covering the gas turbine and PV in the event of 

failure. It is only slightly discharged to meet electrical 

demand on the first and third typical days. 

Based on the thermal energy balance, the thermal 

demand is almost entirely met by the thermal energy that is 

cogenerated by the gas turbines. To fulfil the demand, a 

thermal energy storage is installed instead of the heat pump, 

due to the lower specific cost and better integration with the 

CHP gas turbines. The TES is only utilized on the second 

typical day and during the extreme day with the highest 

thermal demand.  

In terms of EV charging, the optimized design features 

910 EV chargers. Consequently, the maximum power 

supplied to the EVs, which is used to size the charging 

station, reaches 17.47 MW. This value is greater than the 

maximum power that would be required for a non-flexible 

solution in which the EVs are instantly charged as they 

arrive (16.1 MW). Thus, it is more cost-effective to exploit 

the low cost of electricity of the PV to charge the EVs 

instead of peak shaving, an operation that would reduce the 

power needed at peak demand times and, therefore, the 

investment cost of the charging station. 

 

On-grid case: 

In the grid-connected scenario, the AES is optimized 

with a design that includes: 

• One GTurb2 gas turbine  

• PV size: 76 MWe, equally distributed across three PV 

fields. 

• TES size: 47.4 MWh. 

The design is optimized to minimize the total annual 

cost, considering an electricity export price from ref. (GME, 

2023), while the import price is defined as a standard tariff 

of an average industrial user.  
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Figure 6. Electrical and thermal cumulative energy balance on the six typical and six extreme days for the on-grid case. 

Table 3. Main optimization global results. 

Scenario Off-Grid On-Grid Reference 

Optimal design  

3 CHP GTurbB GT 

PV size: 48.8 MW 

BESS size: 35.3 MWh 

TES size: 30 MWh 

1 CHP GTurbB GT 

PV size: 76 MW 

BESS size: 0 MWh 

TES size: 47.4 MWh 

All electricity imported 

from the grid. 

Boiler size: 31 MWh 

TAC [M$/y] 28.18 22.73 45.65 

Yearly operational cost [M$/y] 17.91 18.29 45.49 

Yearly investment cost [M$/y] 10.27 8.16 0.16 

Yearly revenues [M$/y] - 3.72 - 

Electricity generated [GWh/y] 257.15 304.26 257.15 

Electricity generated PV [GWh/y] 71.61 115.36 - 

Electricity generated gas turbines [GWh/y] 185.54 188.90 - 

Electricity to charging station [GWh/y] 59.84 59.84 59.84 

Electricity exported to the grid [GWh/y] - 53.11 - 

Fuel consumption [GWh/y] 515.08 514.04 75.62 

CO2 emissions [kton/y] 101.65 101.46 116.94 

Carbon Intensity [kgCO2/MWh] 395.28 333.44 454.78 

 

The CO2 emissions for the grid purchased electricity 

are evaluated considering a carbon intensity of 400.4 

kgCO2/MWh (ISPRA, 2022). This way, the TAC includes 

the revenues from the electricity sold to the grid 

(3.72 M$/y), and it is found to be 22.73 M$/y. The 

corresponding cost of electricity is 74.62 $/MWh. The 

cumulative electrical and thermal energy balances of the 

grid-connected case are illustrated in Figure 6. The gas 
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turbine operates for 7221 hours at an average load of 78.4%, 

generating around 62% of the total electricity produced. The 

technology installed is the GTurbB for the same reasons 

explained for the off-grid scenario. Moreover, as the 

reliability constraints are not included in the problem 

formulation in the grid-connected case, there is no need to 

install a spare turbine. Utilizing a gas turbine rather than 

purchasing electricity from the grid is more cost-effective 

because of the lower COE (99.04 $/MWh). Furthermore, 

the use of gas turbines enables the production of thermal 

power to meet the airport's demand. Therefore, the 

electricity from the grid is only bought to meet demand 

peaks when the gas turbine is at maximum load and the PV 

is insufficient to meet the demand. 

Compared to the off-grid case, a higher quantity of PV 

is installed, enabling the sale of excess electricity, and 

generating additional revenue, especially when the export 

price is favourable. Consequently, the PV accounts for 

37.91% of the total electricity generated, representing a 5% 

increase compared to the previous case. In addition, there 

are about 1540 hours in which the gas turbine is not 

operating, and the PV system alone satisfies the entire 

electricity production, impacting the thermal energy 

balance. 

Unlike the off-grid scenario, installing a BESS is not 

justified as the cost of electricity for the combined PV and 

battery system is higher than that of the GTurbB. Moreover, 

since reliability constraints are not considered in the grid-

connected case, using a BESS as a power bank is no longer 

necessary. 

The cogeneration of the gas turbine again satisfies 

almost the entire thermal demand. A thermal energy storage 

is preferred over a heat pump, similar to the off-grid case. 

However, the TES size is larger than in the previous 

scenario because the gas turbine is turned off when the 

thermal demand is higher.  

Regarding the charging station, a total of 883 chargers 

have been installed, with a maximum capacity of 16.95 

MW. The same considerations as in the off-grid case still 

apply. However, the impact of increasing the peak power 

delivered to the EVs to take advantage of the PV's low COE 

is diminished because the electricity generated by the PV is 

also sold to the grid. 

Overall, compared to the off-grid case, the grid-

connected configuration results in a lower TAC (-19.3%). 

The reduction is due to several factors. Firstly, the absence 

of reliability requirements allows for a decrease in 

investment costs (-20.6%), avoiding the installation of 

BESS and only requiring a single gas turbine. Secondly, the 

on-grid system allows for greater cost-effectiveness of PV 

as it generates revenue from exporting electricity. 

Additionally, the higher power generated by RES leads to a 

slight reduction in the fuel expenses and CO2 emissions (i.e. 

carbon tax). Conversely, the increase in the investment cost 

for the TES and PV and the higher O&M of PV do not 

significantly impact the TAC. 

Based on the findings presented in Table 3, it can be 

observed that the TAC of the reference scenario amounts to 

45.65 M$/y, corresponding to a COE of 179.25 $/MWh. 

These results demonstrate the effectiveness of the proposed 

optimization methodology, as it enables a reduction in the 

TAC of -38.7% and -50.2% for the off-grid and grid-

connected scenarios, respectively. The observed cost 

reductions are primarily attributed to the utilization of gas 

turbines, which exhibit a lower COE compared to the cost 

of purchasing electricity. Moreover, the optimization 

framework facilitates a reduction in CO2 emissions.  

 

CONCLUSIONS 

The present study, conducted in collaboration with 

Baker Hughes, aims to optimize the design of an aggregated 

energy system for a medium-sized airport with high 

reliability requirements. The problem is formulated as a 

stochastic MILP model with the objective of minimizing the 

total annual cost, including both capital and operational 

costs. The model includes a wide range of reliability 

constraints (N-1 reliability, spinning reserve, etc.) and 

allows for the optimal sizing of the integrated charging 

station while scheduling the EVs' charging. The set of units 

available for selection includes CHP gas turbines, a heat 

pump, PV, BESS, and TES. 

The performance of the aggregated energy system are 

optimized in two conditions, i.e., off-grid and grid-

connected scenarios. The outcomes are compared with the 

reference case, where the electricity is entirely purchased 

from the grid. The study demonstrates that the optimized 

scenarios significantly reduce the total annual cost 

compared to the reference case (-38.7% and -50.2% for the 

off-grid and grid-connected cases, respectively), indicating 

the effectiveness of the optimization code in dealing with 

real-world problems. 

The findings of the study demonstrate that the most 

efficient design for both scenarios is heavily dependent on 

the utilization of CHP gas turbines to produce both electric 

and thermal power. 

The grid-connected configuration yields a lower total 

annual cost (-19.3%) than the off-grid case primarily due to 

the absence of reliability requirements, which leads to a 

decrease in the investment cost, and the opportunity to 

export electricity generated with PV. 
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