

R&D activities on sCO₂ in Europe: Components Challenge – Heat Exchangers [2]

Primary heaters

Fourth episode – 12 June 2023

JOIN OUR SUSTAINABLE ENERGY DAY

#EUSEW2023

European Sustainable Energy Week

This webinar is in cooperation with 9 European R&D projects

CO₂OLHEAT

COMPASSCO,

SCARABEUS 🔇

CARBOSOLA

sCO₂-Efekt

Webinar content & speakers

- CFD-aided conceptual design of a cooler in sCO₂ cycles for novel waste-heat-to-power (WH2P) plant layouts (Panagiotis Drosatos – CERTH)
- Development of a high-efficiency particle-sCO₂ heat exchanger for CSP applications (Maxime Rouzès – John Cockerill)
- How additive manufacturing will help the energy sector: application to the primary heat exchanger in a sCO₂ cycle (Damien Serret - TEMISTH)

CERTH

IFI I AS

R&D activities on sCO₂ in Europe

CFD-aided conceptual design of a cooler in s-CO₂ cycles for novel waste-heat-topower (WH2P) plant layouts

PhD(c) Panagiotis Drosatos, Research Associate at CERTH

Problem description

The project CO₂OLHEAT (*Supercritical* CO₂ *power cycles demonstration in Operational environment Locally valorising industrial Waste Heat*) has received funding from the European Union's Horizon 2020 research and innovation programme under **grant agreement** N° 101022831

- CO2OLHEAT project aims to demonstrate at MW scale a compact and efficient sCO₂ cycle for WH2P application
- CERTH provides support to industrial partner for the verification and optimization (if needed) of the cooler design in terms of thermal behavior and performance by using CFD analysis in ANSYS Fluent[®]

Problem description

- In fact, cooler is a two-stream h/x; the interior domain consists of the working medium (s-CO₂), while the exterior of the cooling medium (water)
- The initial design* of the cooler h/x comprises two cells with 40 rows of 4 U-tubes each
- It also presents two headers, one for the inlet and one for the outlet flow
- <u>Challenges in numerical simulation due to</u> <u>complicated geometric configurations</u>

* Not allowed to be disclosed

Problem description

When NIST real-gas libraries are utilized in an ANSYS Fluent[®] case, all domains need to include the same medium. If this is not the case, as in cooler h/x, each domain is represented by a different model. Both are coupled with each other through a BC (i.e., temperature distribution) on a common interface → challenge in numerical simulation

One halfcell is simulated

.

Headers are excluded from the first numerical tests (homogene ous distribution) Domain 1 periodically sends to Domain 2 <u>a profile of the</u> temperature distribution on the interior surface of the tube

The overall solution is finalized when both solutions are converged

Domain 2 sends its feedback to Domain 1 <u>as a profile of the</u> <u>temperature distribution</u> on the exterior surface of the tube

Methodology

I. Validation

3. Coupled solution – one row of

tubes

2. Grid-

independence tests / single tube

Coupled

solution multiple rows of tubes

- Validation of the NIST properties for the sCO₂ and the models provided in ANSYS Fluent[®] v15.0 using the experimental data¹ regarding the thermal stratification in heated horizontal sCO₂ pipe flows
- 2. Grid-independent solution
- 3. Coupled scheme in only one row of tubes
- 4. Coupled scheme in multiple rows of tubes, if possible

¹ Experimental investigations on the heat transfer characteristics of supercritical CO_2 in heated horizontal pipes, K. Theologou, et al., The 4th European sCO₂ conference for energy systems, March 23-24, 2021

Validation - Experiment

x=-0.82

Properties	Value
Thermal conductivity of the tube's material (W/m/K)	11.4
Heat flux on the exterior side of the tube's heated part (kW/m ²)	104.
Inlet mass flow rate, temperature and pressure	0.04 kg/s or 800 kg/s/m² 5℃ 77.5 bar
Conditions on the exterior side of the tube's unheated parts (BCs)	convection heat transfer coefficient = 10 W/m²/K free stream temperature = 20°C

- During the experiment, 42 points on the top, 42 on the bottom and 42 on the side of the tube were used to measure the wall temperature
- This parameter (metal temperature) along with the working medium enthalpy will be used for the mathematical model validation.

Validation – Numerical grids

68.					Gregori
		Numerical Grid #1	Numerical Grid #2	Numerical Grid #3	Numerical Grid #4
	Inflation layers on fluid and solid part	fluid:10, solid:5	fluid:20, solid:5	fluid:40, solid:5	fluid:40, solid:5
	Edge sizing	Inner edge:34 Outer edge:36	Inner edge:34 Outer edge:36	Inner edge:34 Outer edge:34	Inner edge:60 Outer edge:60
	Number of divisions along the flow (heated part)	300	300	2400	2400
	Number of cells	611,200	867,510	5,257,275	9,642,216
	Element size (global), min/max (m)	1.84e-04 – 1.43e-03	1.21e-04 – 1.43e-03	3.61e-05 – 9e-04	2.47e-05 – 6.29e-04
	wall Y+ (interface), min/max	6.06 – 26.62	1.11 - 4.63	0.027-0.108	0.017-0.057
	Depiction of the developed grid (side view)				

Validation – Parametric investigation

Among the several tests performed the ones with special interest are:

	Turbulence model	Spatial discretization	Numerical Grid	Scope
Case 2	SST k-omega	 Green-Gauss Cell-Based Standard scheme for pressure discretization Second Order Upwind scheme 	Numerical Grid #1	
Case 9	SST k-omega	 Green-Gauss Cell-Based Standard scheme for pressure discretization Second Order Upwind scheme 	Numerical Grid #3	Examination of the effect of the numerical grid on the results derived by the SST k-omega turbulence model
Case 11	SST k-omega	 Green-Gauss Cell-Based Standard scheme for pressure discretization Second Order Upwind scheme 	Numerical Grid #4	

Validation – Results

- The SST k-omega turbulence model with coarse mesh (Numerical Grid #1) cannot provide satisfactory agreement with the experimental data, see Case 2
- The SST k-omega turbulence model with middle (Numerical Grid #3) and dense numerical grid (Numerical Grid #4) provides better agreement with the experimental data, see Case 9 and Case 11 → necessity for high computational resources; further challenge in numerical simulation
- There is **grid-independent solution**, based on the comparison of two cases with different grid discretization, Cases 9 & 11
- <u>The selection of different turbulence model</u> <u>deteriorates</u> the results, despite the implemented grid density

Validation – Results

 The results derived by the ANSYS Fluent[®] in the case of SST k-omega turbulence model with middle numerical grid in terms of wall temperature/working medium enthalpy distribution along the working medium flow direction present a very satisfying agreement with the experimental data, especially for the side and bottom points of the tube

Grid independence – Cases & numerical grids

	Case 1a	Case 1b	Case 1c	Case 1d
Domain	5 interior & 3 exterior inflation layers	5 interior & 3 exterior inflation layers	5 interior & 3 exterior inflation layers	10 interior & 5 exterior inflation layers
Total number of elements	112,000 hexa	480,555 hexa	2,125,530 mixed	14,086,800 hexa
Maximum skewness factor / interior wall y+	0.61 / 95.32-222.59	0.51/ 40.95-115.07	0.60/ 20.19-59.12	0.88/ 0.30-0.72

The imposed conditions are the ones of the real operation

Grid independence – Results

Temperature distribution in two groups of 91 points each; the first along the tube centerline and the second close to the tube interior surface

- The first three cases, despite the different grid quality, show agreement to each other, both for the centerline and the boundary points
- When, however, a sophisticated grid close to the domain boundary is applied, Case 1d, y+ values
 <1, significant differences can be seen.
- For higher accuracy of the derived results, special attention must be paid to the development of the boundary layers, owing to the implementation of the k-omega SST turbulence model. So, highest y+ values must be below 1

Coupled scheme (1 row) – Cases & numerical grids

	Case 2a	Case 2b & 2c & 2d & 2e	
Domain (interior)	5 interior & 3 exterior inflation layers	10 interior & 5 exterior inflation layers	
Total number of elements	7,721,865 mixed	24,640,800 hexa	
Maximum skewness factor / interior wall y+	0.93 / 16.53-94.00	0.98 / maximum <1	

Coupled scheme (1 row) – Cases & numerical grids

	Case 2a	Case 2b	Case 2c	Case 2d	Case 2e
Domain (exterior)	5	5	10 interior 10 exterior (9.62e-06m max thickness)	10 interior 10 exterior (7.62e-06m max thickness)	10 interior 10 exterior (5.62e-06m max thickness)
Total number of elements	6,407,215 mixed	747,072 mixed	11,630,695	17,989,526 mixed	25,852,600 mixed
Maximum skewness factor / interior wall y+	0.82 / 0.22-52.18	0.91/ 0.26-166.68	0.79/ <1	0.99/ <1	0.83/ <1

Temperature distribution in 184 points for the first tube (92 for the centerline and 92 for the points close to the wall) and 112 points for the rest tubes (56 for the centerline and 56 for the points close to the wall)

Among all four tubes, in each case examined, the differences in the temperature distribution are minor

- Close to the tubes' boundary walls, in the U-turn formation, temperature increase of the working medium is observed owing to the adiabatic BC (zero heat losses) and the resulted higher material temperature
- On the contrary, in the same region, along the **tube's centerline**, the trend of **gradual temperature decrease** is observed
- Steeper temperature decrease slope in the first part of the tube (+y part). This indicates higher heat transfer rates in this specific region, owing to the lower temperature levels of the inlet water stream
- The small differences among the four tubes for each case indicate homogeneous field of the heat flux density values
- In fact, Case 2c, Case 2d and Case 2e (all with high grid density) show minor differences between each other for all four tubes in terms of the working medium temperature distribution, since the absolute temperature differences are <5°C

Wall heat transfer coefficien t (W/m²/K)	Case (2a)	Case (2b)	Case (2c)	Case (2d)	Case (2e)
+y part	5616	6676	3097	2282	2583
-y part	4826	5548	2837	2133	2452

- Higher heat transfer rates in +y region, owing to the lower temperature levels of the inlet water stream
- Differences among the cases. The impact of the developed numerical grid on the results is significant

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

Coupled scheme (1 row) – Results

Homogeneousheatfluxdensityfieldamong the fourtubestubesforcase considered

 Cases 2c, 2d and 2e (all with high grid density) show minor differences between each other

Significant differences even in only one row of tubes among the cases. **Smaller differences** observed in Cases 2c, 2d and 2e (all with **high grid density**)

(w)	Case (2a)	Case (2b)	Case (2c)	Case (2d)	Case (2e)
Tube 1	-4654	-5519	-3484	-3249	-3512
Tube 2	-4828	-5740	-4170	-3241	-3535
Tube 3	-4833	-5755	-4181	-3268	-3570
Tube 4	-4738	-5668	-3602	-3272	-3572
Total	-19053	-22682	-15437	-13030	-14189

Estimation for all rows of tubes from **extrapolation**: based on CFD simulations, in this case for example, the heat transfer for 40 rows of U-turn tubes is expected to be **0.52MW-0.62MW**

Coupled scheme (1 row) – Conclusions

- The validation process indicated that a very fine grid (y+<1) with k-omega turbulence model provides the best agreement between experimental data and CFD results
- Therefore, the simulation of the cooler h/x has been proven **quite challenging**
- High demands on computational resources \rightarrow 60-80 cores for each domain
- The investigation was forced to be focused on **only one row** of tubes
- No grid-independent solution was able to be achieved. There is need for very dense grid to reduce the differences among the derived results (y+ <1)
- Due to **computational resource limits**, the overall performance (all rows of tubes) can only be estimated by **extrapolation** of the results as derived by only one row of tubes
- In similar cases, CFD model needs **experimental data** for further calibration and validation

<u>Challenges</u> <u>in the</u> <u>numerical</u> <u>simulation</u>

Thank you for your attention!

The project CO2OLHEAT (Supercritical CO₂ power cycles demonstration in Operational environment Locally valorising industrial Waste Heat) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101022831

R&D activities on sCO₂ in Europe

Development of a high-efficiency particle-sCO₂ heat exchanger for CSP applications, Maxime Rouzès, John Cockerill

26

Outline

- John Cockerill Solar & Thermal storage
- COMPASsCO2 project
- Industrial-scale Particle-sCO2 Heat Exchanger (HEX)
- Challenges
- Conclusion & Perspectives

John Cockerill Solar & Thermal Storage *"200-year expertise in boiler engineering at disposal for CSP development"*

		Installation	
	Realization	- Assembly	<i>y</i>
Innovation	- Optimization	- Inspection	
- New concept	- Validation	- Monitoring	
- Developmen	t - Manufacturing	g	

- Design

- ✓ 2012: First solar receiver.
- 2012: First HRSG with stainless steel
- ✓ 2014: First Molten Salt Solar Receiver
- ✓ 2019: Molten Salt Steam Generator
- ✓ 2022 : Molten Salt Solar Receiver

John Cockerill Solar & Thermal Storage 🚠

Concentrated Solar Power Plant (CSP)

Molten Salt Solar Receiver

John Cockerill Solar & Thermal Storage 🚠

Molten Salt Steam Generator

Source : John Cockerill, Molten Salt Steam Generator 3D model

Objectives

The project focus is to develop **new materials for extreme conditions** in order to integrate two innovative systems:

CSP plants with particles and sCO2 Brayton power cycles

ETN

COMPASsCO2 John Cockerill Solar scope

Design, construct and operate a 40 kW <u>particle/sCO2 heat exchanger</u> section in order to validate the degradation and heat transfer models Hot moving particles

Particle-sCO2 HEX

Process parameters

Parameters	Particles (high pressure HEX)	sCO2 (high pressure HEX)
Inlet temperature [°C]	900	532,8
Outlet temperature [°C]	582,8	700
Inlet pressure [bar]	/	265,3
Outlet pressure [bar]	/	260
Mass flowrate [kg/s]	355,9	632,6

Particle-sCO2 HEX : challenges

Process conditions

- \Rightarrow High power : ~ 130 MW
- \Rightarrow High temperature & gradient
- \Rightarrow High pressure
- \Rightarrow Corrosive & erosive environments
- \Rightarrow Material & cost

- \Rightarrow Non-homogeneous distribution of temperature along the most extreme tube
- \Rightarrow Angle-dependent particle heat transfer coefficient

John

Particle-sCO2 HEX : challenges

Material selection

Material	Temperature	Pressure	Selected
	limit	limit	materials
Creep-strength enhanced ferritic and	590°C	250 bar	P92
advance austenitic stainless steels	< 1 < 620°C		Sanicro 25
Ni-based alloys	700 °C	350 bar	Haynes 282
	< T <		Inconel 740
	750 °C		Inconel 617

Particle-sCO2 HEX : challenges

Manufacturing

- \Rightarrow Tailor-made tubes (high pressure)
- ⇒Material procurement
- \Rightarrow Long lead time
- \Rightarrow Weldings on site
 - \Rightarrow Dissymmetric heterogeneous
 - \Rightarrow NDT
 - \Rightarrow Accessibility
- \Rightarrow Hydrotests

Transportation

- \Rightarrow Height = 3,5m max.
- \Rightarrow Width = 4 m max.
- \Rightarrow Length = 25 m
- \Rightarrow Weight = 50T-60T
- \Rightarrow Road surveys necessary

Particle-sCO2 HEX

Modular Solution

 $\Rightarrow 2 \text{ materials (Ni-based alloys} \\ + P92 \text{ or Sanicro25)} \\ \Rightarrow \text{Intermediate headers} \\ \Rightarrow \text{Modules interchangeable}$

Particle-sCO2 HEX

Modular Solution

Scale 1 : 100

Left View Scale 1 : 100

ETN sCO2 webinar series

Conclusion & Perspectives

- Materials selection & cost
- Harsh environment (high pressure & temperature)
- Manufacturing, transportation & assembly
- New design : modular solution
- Lab-scale pilot tests
- Techno-economic optimization analysis

Thank you for your attention COMPASSCO2

The COMPASsCO2 project has received funding from the European Union's Horizon 2020 Research and Innovation Action (RIA) under grant agreement No. 958418.

R&D activities on sCO₂ in Europe

How additive manufacturing will help the energy sector: Application to the primary heat exchanger

Damien SERRET, R&D Manager temisth

Introduction: Additive manufacturing

Part size limitations (L-PBF technology)

Volumes available are "limited"

Some "old" big 3D printer (Ref. 2018) X-Line (Concept Laser - US) 500 x 500 x up to 400 mm3

- X-Line (Concept Laser US) 500 X 500 X up to 400 mm3
 MetalEAD 4 (Additive Industry Nederland) 420 x 420 x 40
- MetalFAB 1 (Additive Industry Nederland) 420 x 420 x 400 mm3
- □ TS500 (Techgine 3D China) 500 x 500 x 1000 mm3

Some available big 3D printer (Ref. 2023)

- □ Saphire (Velo3D US) 600*1000 mm³
- □ M 4K-4 (AMCM US) 450x450x1000 mm³
- □ NXG XII (SLM Solution Germany) 350 x 350 x 350 mm &12 lasers (up to 1000ccm/h)
- □ FS621M-U-4 (Farsoon China) 620x620x1700 mm³
- □ M1250 (Eplus3D China) 1250x1250x1350mm³ & 9 lasers

→ AM HX size will still be bigger and bigger & faster and faster !

Outline

- TEMISTh company
- Additive Manufacturing for heat exchanger
- DESOLINATION project
- Primary heat échanger development

About us

Our team of **experts in thermal systems and advanced manufacturing** supports industrial companies in the development of **tailored solution**:

- Design and optimization
- Advanced manufacturing
- Testing and qualification

New : we are supplier of small batches of customized thermal parts

Domains of activity:

- Aerospace and defense
- Transports
- Energy
- Oil & Gas

Domains & Applications

And anywhere thermal management is an issue ...

Additive manufacturing

Additive manufacturing Impact on the HX area

Additive manufacturing

Additive manufacturing Impact on the HX area

A lot of industrial HX manufacturers involved on the topic:

- Aeronautic: UTC, Raytheon, Safran, GE, Boeing, Airbus, Liebherr...
- Oil & Gas : Air Liquide, Linde
- Automotive : Valeo, Honda
- Energy : Westinghouse, CEA, Siemens Energy
- HX manufacturer: Alfa Laval, Fives Cryo, Meggit (Heatric & Hieta), Nexson...

Additive Manufacturing

How to take benefit from this manufacturing process ?

Additive Manufacturing

Real part

From virtual file to a materialized component

15 June 2023 Allow realizing complex internal structures Allow reducing assembly Parts can be modified and produced on demand

Heat exchangers at all sizes

Primary HX case

Additive manufacturing

Mutiscale characterization

Ex: Impossible to design and simulate the HX performances at all scales

→ Choice to do considering the studied scale (roughness model, equivalent porous model...)

[1] TOSCANO, Lenora et LONG, Ernest. CONTROLLING COPPER ROUGHNESS TO ENHANCE SURFACE FINISH PERFORMANCE.
 [2] Trane Company
 [3] Baknor Cooling Company
 [4] BOYD Corporation

Additive manufacturing

Material interest and comparison

- NI 718 widely used in Aeronautic
- Interest to developp new alloys and set of AM parameters (Haynes alloys for example)
- Interest to study the creep behaviour

DESOLINATION project

19 industrial and research experts from solar and desalination fields

DESOLINATION application case

4 innovative blocks for an optimised CSP and desalination coupling

DESOLINATION HX requirements

Adapted Heat exchangers

Innovative heat exchangers adapted to the CSP-desalination system

Methodology

Concept and design

- Modular approach to minimize the manufacturing risk
- \rightarrow Definition of parameters
 - Global heat transfer coefficient
 - Heat exchange surface
 - Fluid pressure drop

• Aims: definition of the module number & organisation

Internal Structure

• Front de pareto des solutions présentant le Hsvolumique global en fonction de DP linéique chaud

Thermal and hydraulic for comparison bjectif (HOT)

Internal stucture

Mechanical comparison: Von Mises Criter Von Mises Max sécurité : 78,5 Mpa

Structure	Von Mises Max / Von Mises Securite
Tube 2mm	63%
Tube 4mm	68%
Gyroid 8mm	76%
Tube 6mm	76%
WT 2mm	89%
Gyroid 12mm	95%
Gyroid 10mm	97%
WT 6mm	99%
WT 4mm	99%
Half Tube 2mm	223%
Xlattice 24mm	298%
Half Tube 4mm	306%
Xlattice 16mm	326%
Xlattice 32mm	378%
Half Tube 6mm	409%

Internal structure Focus on TPMS structure

Mockup development

To be tested at LUT university test bench

Conclusions

Additive manufacturing is a promising manufacturing process

- Improve HX performance
- Use of new alloys
- Cost reduction for high value alloys

DESOLINATION project

- Mockup are under manufacturing
- Promising design will be delivered and tested

Acknowledgement

This work is partially funded by the DESOLINATION project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101022686 (DESOLINATION).

Thank you and see you next time!

Question / comments? js@etn.global