

sCO₂ bottoming cycle

Marco Ruggiero, Baker Hughes

Why should we look at bottoming cycles applications for sCO₂

Pros

- Synergy with gas turbine prime mover
- Simple cycle gas turbines widely deployed, both for power generation and industrial applications
- Increased operability/flexibility compared to steam cycle

Cons

- Manufacturing maturity is low...still too expensive
- No clear «sweet spot»

sCO₂ Task Force

sCO₂ Task Force

Phase 1: a study on sCO₂ as a bottoming cycle in off shore applications

Leveraging student exchange from USE to POLIMI

No/Low competition from other technologies

No Bias

Multi objective cycle configuration optimization Efficiency, power, weight, cost...

Entitlment vs constrained performance

How far are we?

a paper for ASME 2023

Phase 2: Assessing the thermodynamic potential of gas turbine and sCO₂ power cycles and the implications on gas turbine design

Fresh look at GT exhaust conditions and operation mode

Understand the entitlment of the overall system

Potential task force topics

- «What if...» scenarios; for example techno economic studies assuming component cost maturity or component cost sensitivity studies
- Deep dive studies in specific applications / mission profiles

WE NEED YOU!