

Safety on GT Enclosures

H2 fuel GT

Stefano Rossin

Hydrogen safety management in Gas Turbines

Engine and package modifications

- Equipment validation & ATEX certification
- Sealing & Gasket
- Material compatibility
- Overall Gas turbine performance & durability analysis
- Start-up and shut-down procedures

Auxiliary systems

Combustion System hydrogen ready

Fuel gas system, piping and valves

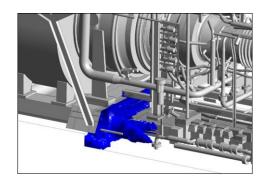
Blending skid

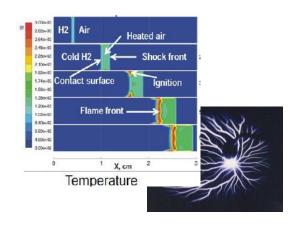
Ventilation system

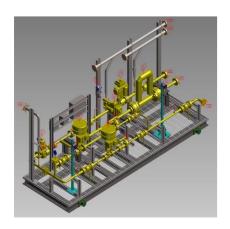
Fire fighting system

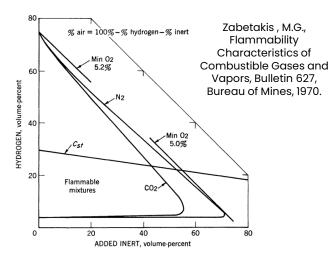
UCP: Hardware & Software

Instrumentation, Fire&Gas and Flame detection sensors


Package purge requirements


Fuel gas analyzer



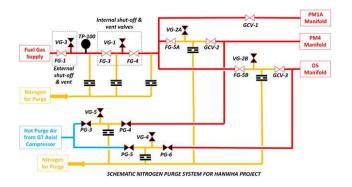

Auxiliary System Safety

Fuel gas system

Fire Fighting system

Gas Detection system:

Possible leaks and formation of combustible mixtures easily ignitable make the gas detection system utmost important. Local gas detectors on the fuel gas skid is often required.


Ignition phenomena:

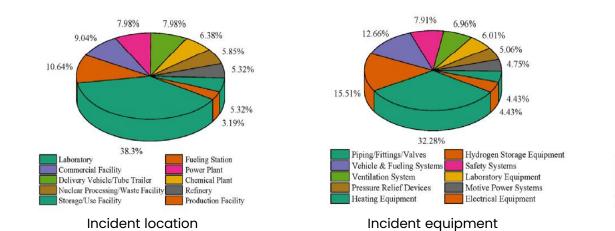
As the engine is confined in an enclosed space any potential ignition source needs to be considered to avoid auto-ignition mechanisms to happen;

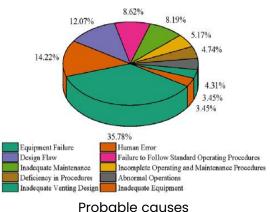
- Hot Surface Ignition
- Hot gas ignition,
- Diffusion Ignition
- Electrostatic Discharges

The Nitrogen purge system:

it is often implemented in fuel lines to provide a proper barrier between air and hydrogen fuel.

CO₂ Firefighting System:


hydrogen is highly reactive and requires a higher concentration of extinguishing agent.


There is a potential Increase of the number of CO₂ cylinders

NFPA12 requires 75% by volume of CO2 concentration to extinguish the fire, while it is required only 34% for pure methane.

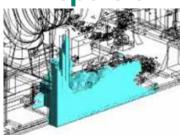
H2 risk overall path

31.18%

10.27%
6.84%
5.32%
2.66%
1.9%

Property Damage
Minor Injury
Loss of Human Life
Facility Closed Until Repair Cor
Facility Closure

Damages and injuries


Yang F. et al., Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process

Leak

To reduce all the possible source

Dispersion

Gas dispersion inside enclosure and flammable mixture formation

Detection

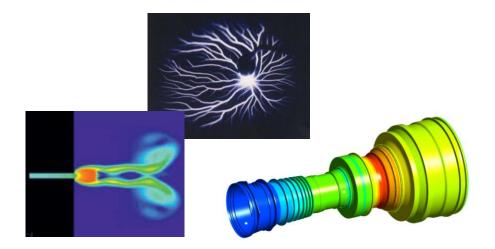
detect leak asap with suitable instrumentation

Potential Ignition

remove possible source of ignition

Explosion

mitigate consequences

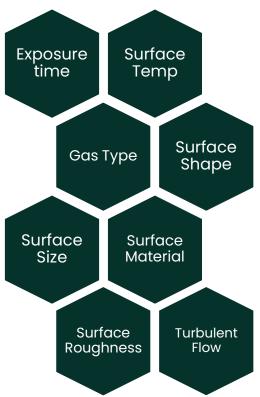


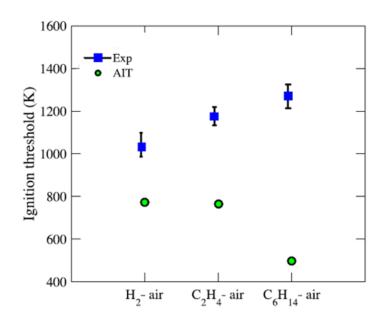
Autoignition Mechanism

Ignition phenomena:

As the engine is confined in an enclosed space any potential ignition source needs to be considered to avoid auto-ignition mechanisms to happen:

- Hot Surface Ignition
- · Hot gas ignition,
- Diffusion Ignition
- Electrostatic Discharges



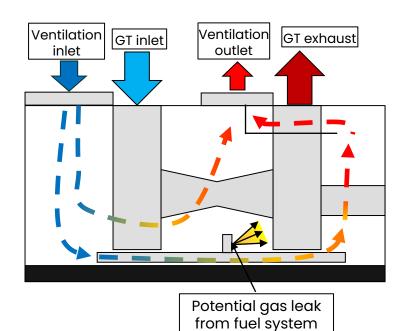

Hot gas ignition temperatures **HGIT** is close to the **HSIT** when the heat source diameter is the same. Both are higher than the AIT of the mixtures.

Combustible Gas	HGIT *(air jet)	HSIT	AIT
Methane	760°C	780°C	600°C
Hydrogen	720°C	750°C	560°C

Hot Gas Ignition Temperatures of Hydrocarbons Fuel Vapor-Air Mixtures, J.M. Kuchta, U.S. Department of the Interior Bureau of Mines

Critical Parameters

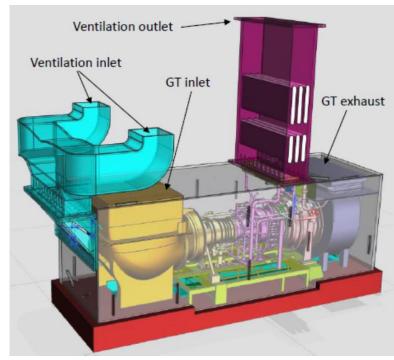
Boeck, L.R., Meijers, M., Kink, A., Mével, R., Shepherd, J.E., Ignition of fuel-air mixtures from a hot circular cylinder, Combustion and Flame 185 2,65–277, 2017.

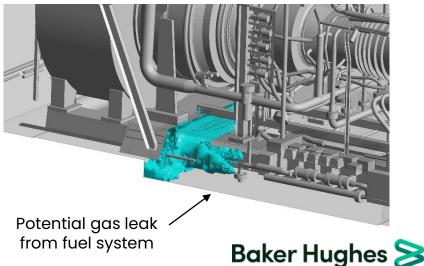


Ventilation System

Gas Turbine is installed inside an acoustic enclosure to isolate the engine from the external environment

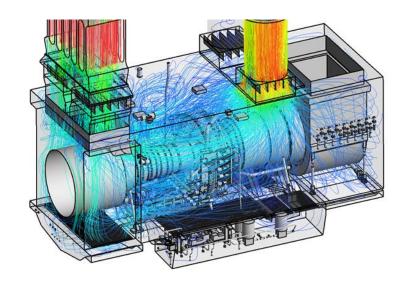
Ventilation system is required in order:

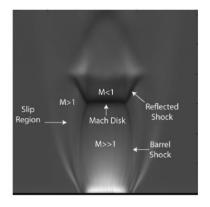

- to **limit the temperature** inside the packge under items certification temperature
- to dilute accidental fuel gas leaks



Fresh ventilation flow is injected upstream the package

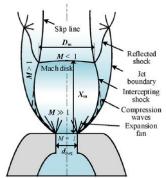
Heat is removed and discharged downstream the package


Accidental gas leakages must be properly diluted

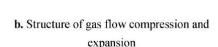


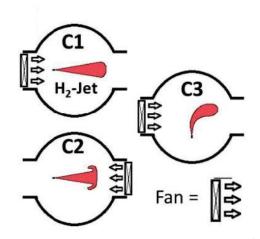
Leak - Underexpanded jet

Complex geometry

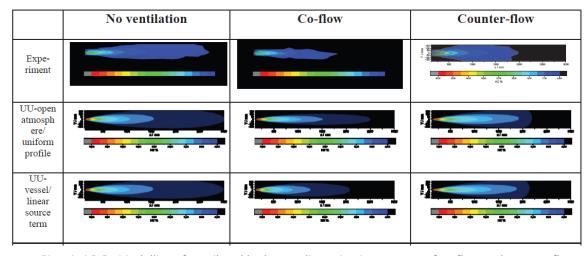


Complex phenomenon




a. Hydrogen vertical jet morphology at 0.98

Yang F. et al., Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process



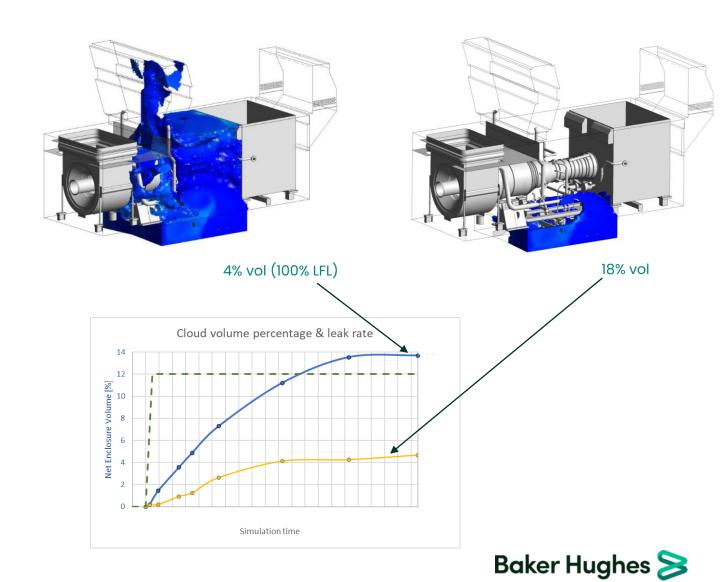
b. Structure of gas flow compression and expansion

Krune J., Hydrogen jet structure in presence of forced co-, counter- and cross-flow ventilation

Giannissi S.G., Modelling of ventilated hydrogen dispersion in presence of co-flow and counter-flow

Sudden Rupture

After less than a seconds from sudden rupture, H₂ cloud volume inside GT enclosure reaches value above ISO 21789 limit (0.15% net enclosure volume).


Sudden rupture
Fuel Gas Pressure ≥ 30 barg
Leak mass flow rate ≥ 50 g/s
Leak section 16.5 mm² (1/4" tubing section)

<u>Detectable leakages</u> Leak mass flow rate < 5 g/s Leak section < 2 mm²

To be investigated:

- early gas detection;
- Reduce number of connections/leak sources
- orifice for tubing, where it is feasible.

Transient evolution of leak cloud

Gas Leak Analysis – Exploring CFD options

openFoam

Smaller Domains

Dispersion

Chemistry

Higher

Fire and Explosion

computational cost

PowerFlow (LBM)

Diffusive Dominated

Pro

- Multiphase study
 - "meshless" approach

Cons

 Accuracy to be proven with high gradients

Pro

Dispersion

Large Domains

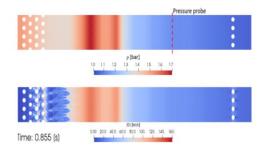
Flacs

- Fire and Explosion
- Chemistry

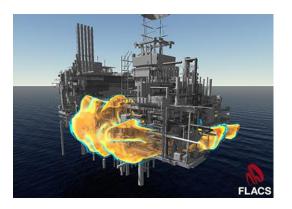
Cons

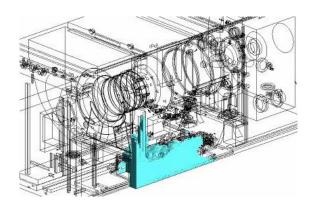
 Based on Distributed Porosity approach, cannot resolve all obstacles

CFX - Fluent

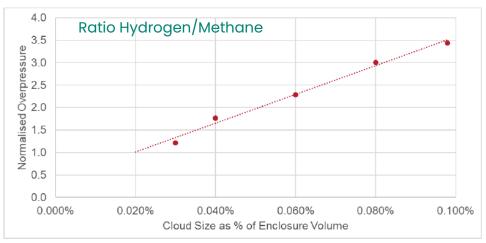

Turbulent Flow

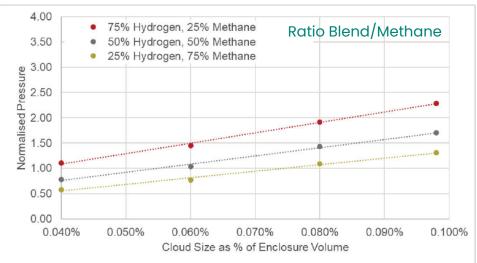
Pro


- consolidated experience
- proven accuracy


Cons

 Long execution time mainly for transient study



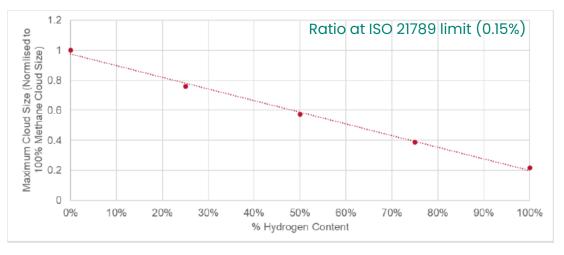


Pro

Cons

Hydrogen blending - overpressure severity





T. S. Vye and D. Miles, Gas turbine enclosures: determining ventilation safety criteria using hydrogen explosion modelling

FLACS simulation of enclosure with centrally located congested volume

Hydrogen explosion severity is estimeted around 5 times more than methane

A. Wimshurst, Assessment of Enclosure Ventilation Safety for Hydrogen Fuelled Gas Turbines

Prevention & Mitigation

PREVENTION:

- Items selection for hazardous area classification (IEC60079-10)
- list all potential causes of ignition (EN1127) + Ignition source control
- · adequate dilution to avoid dangerous concentration of fuel gas

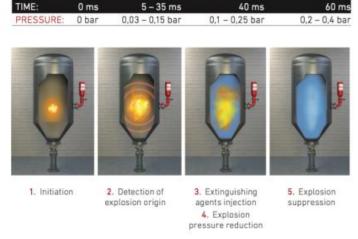
MITIGATION:

Explosion relief panels

T. Skjold et al., Vented hydrogen deflagrations in containers: Effect of congestion for homogeneous and inhomogeneous mixtures

PROS

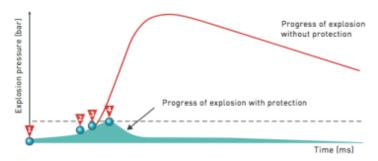
Overpressure reduction


CONS

- Effective only in case of deflagration
- Concerns for installation (snow, ice) and risk due to fire ball release

Suppression system

NFPA67: "Guideline on Explosion Protection for Gaseous Mixtures":


 CO_2 or N_2 discharge inside the enclosure to reduce risk of detonation and to lower deflagration pressure

Suppression Media:

- Deluge
- Water mist
- Co2
- N2

Progress of explosion pressure increase related to time

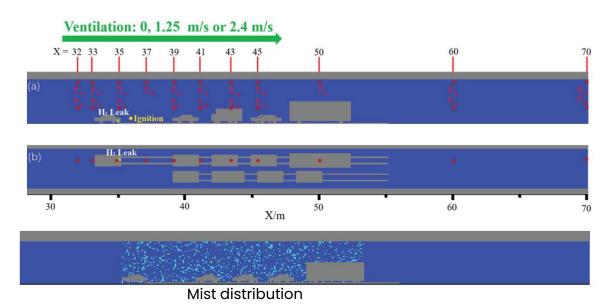
http://vsbfiltration.com/en/fire-and-explosion-protection/

PROS

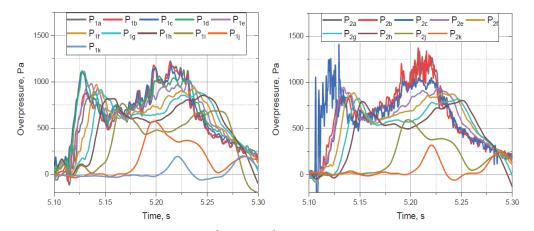
- Overpressure reduction
- Explosion inhibition

CONS

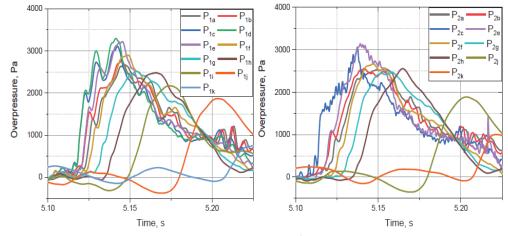
- Reaction time
- Effectiveness with turbulent flow


Enclosure cannot be designed to withstand pressure generated by deflagration

Suppresion Efficacy – Influence of Ventilation


Water injection reduces overpressure ~ 30-40%

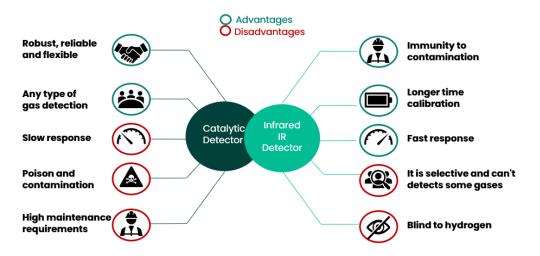
Ventilation increases overpressure... Effect of turbulence

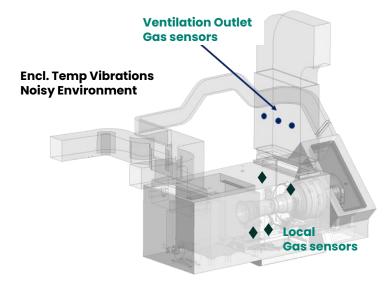


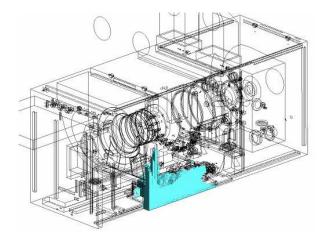
	Maximum overpressure: Pa					
	Without mist With mist				t	
Ignition time	2.5 s	5.1 s	9.2 s		5.1 s	
Ventilation						
0 m/s	2335	2075	1514		1413	
1.25 m/s	4226	5305	3882		3058	
2.4 m/s	4550	4909	4473		3294	

Z. Xu et al. Numerical simulations of suppression effect of water mist on hydrogen deflagration in confined spaces

Overpressure (ignition 5.1) without ventilation, with mist

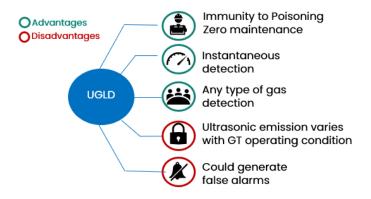


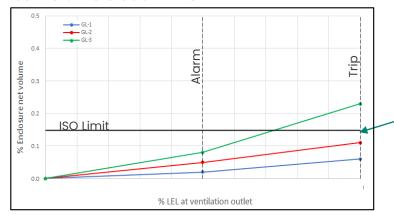

Overpressure (ignition 5.1) 2.4 m/sventilation, with mist



Gas Detection philosophy

Catalytic & IR Gas Leak Detection




Gas Detection:

Hydrogen does not absorb IR energy It is not detectable with an Infrared gas detector

Ultrasonic Gas Leak Detection-UGLD

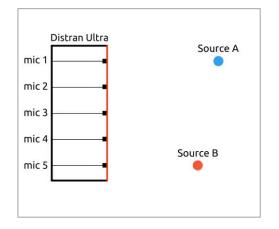
Iso-volume cloud 100% LEL

ISO Limit **0.15%** is related to enclosure overpressure design to contain explosion

Leakage detection - Ultrasound

Multiple Vendors Under Investigation

- MSA Safety
- Honeywell
- DetTronics
- Emerson
- Distran (tested on Air)


DISTRAN:

- Detected leakages as low as ~0.1 g/s (120 l/h) on Air
- Good to detect leak position
- Increase accuracy on quantitative prediction
- Excellent background noise filtering (check on enclosed spaces)
- To be tuned on H2
- Instantaneous detection


Specs:

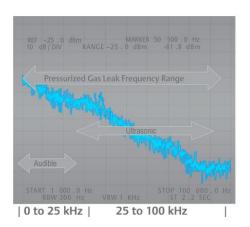
- 128 microphones
- ATEX certified
- Works with all types of gas
- Distance from leakage from 0.3 to 100 m
- Down to 0.3 L/h
- Pressure from 50 mbar

pilot leak tests

Sensing Technologies under scrutiny

Ultrasonic Detector (TRL 7)

Unlike traditional gas detectors, sensitive to gas concentration, the ultrasonic gas detector "hear" the leak.


The sensing element is an acoustic sensor that measures noise fluctuations where gas species leak frequencies are placed (ultrasonic range).

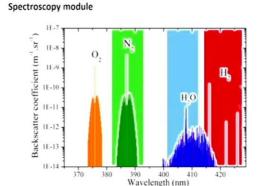
Pros

Fast response (<ls)
Proven in process

Cons

False alarm (bkgnd noise)
Low sensitivity

Spectroscopy (TRL 5)


This sensing technology uses pulsed laser source (LIDAR) exploiting the Raman interaction of hydrogen with an incident light. Scattered light shift is characteristic of the species, its intensity to gas concentration and time-of-travel to position

Pros

Fast response (<1s)
Highly accurate

Cons

Expensive Complex

STAND-OFF DETECTION OF HYDROGEN CONCENTRATION, ID #23

Thermal Conductivity Detectors (TRL 6)

Thermal Conductivity Detectors sense changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas.

When the analyte elutes, the thermal conductivity of the column effluent is reduced causing the filament to heat up and change resistance (and so voltage).

Pros

Cons

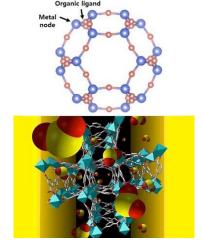
Med response (<3s) Low accuracy

Low cost

R₁ R₂ Signal R₄ Reference Flow

Metal Organic Framework (TRL 4)

MOF made with different metal atoms and organic linkers can selectively absorb specific gases into tailor-made pockets within the structure. MOFs' high surface area is a beneficial aspect for high-performance gas sensors.


A thin film of a tailor-made MOF, coated onto an electrode, forms an electronic sensor that could detect traces of gas.

Pros

Low cost Highly sensitive

Cons

Gas specific
Unclear performance

Next Steps

Tests	Current status	Next steps
Validation of fast Hydrogen sensors	Application in open field	sensor inside GT enclosure in all operating scenarios, to detect hydrogen leak vs. air leak
Dispersion inside confined volume	Different application (e.g. Car parking, quiet volume)	test inside confined, congested and ventilated volume including buoyancy (heat source)
Hot surface ignition	Different conditions (no turbulence, small scales)	Hot surface ignition (temperature and residence time) of hydrogen in ventilated enclosures
Ignition inside enclosure	Different conditions (empty volume, simplified obstacles)	Ignition in ventilated enclosures with suppression system as mitigations solution
Overpressure with H2 Blend	Currently known for 100% Ch4 and H2	Overpressure detection for Ignition of gas blend pocket in confined spaces @ different blend ratio

