

Hydrogen Deployment in Centralised Power Generation

A techno-economic case study

28 October 2022 | 12.00-13.00 CEST

Follow us on LinkedIn @ ETN Young Engineers Committee

Twitter @CleanHydrogenEU
LinkedIn @ Clean Hydrogen Partnership

European Turbine Network (ETN) Young Engineers Committee (YEC)

The YEC recently published our first main report:

"Hydrogen Deployment in Centralised Power Generation – A techno-economic case study"

Download for free at:

https://etn.global/news-and-events/news/hydrogentechno-economic-study/

Download now!

Scan QR code

Agenda

- 1. Workshop Panel Introduction
- 2. Why Hydrogen (H₂)?
- 3. Techno-Economic Study
- 4. Levelized Cost of Electricity (LCOE)
- 5. Carbon Tax
- 6. Natural Gas and Hydrogen Price
- 7. Hydrogen GT Roadmap and Conclusions
- 8. Live Q&A

Workshop Panel

ModeratorAntonio Escamilla Perejón

EU Marie Sklodowska-Curie Early Stage Researcher University of Seville

Panelists

Dr. Jon Runyon

GT Combustion Engineer Uniper

Dr. Serena Gabriele

Hydrogen Business Development Manager Baker Hughes

Dr. Daria Bellotti

Assistant Professor University of Genoa

Alessandro Castelli

PhD Student
Polytechnic University
of Milan

Lorenzo Pilotti

PhD Student
Polytechnic University
of Milan

Why hydrogen (H₂)?

According to IEA Net Zero by 2050 report:

- 17% of global H₂ will be used for power generation
- Requiring ~90 Mt H₂/year
 - Equivalent to today's global annual H₂ production!
 - H₂ needs to be low-carbon or zero-carbon

→ Study aim:

Identify the *economic* and *political* conditions under which H₂ firing in a GT could become viable.

Fraction of total electricity generation attributed to H₂ generation in 2050 (from <u>European Hydrogen Backbone</u>)

Where do we start?

Map of European Natural Gas GT Plants (from Global Power Plant Database)

EU Natural Gas GT Units and Capacity by Size # Units = ●

H₂ blending in GT

- → Hydrogen blending into natural gas in a high-efficiency CCGT will reduce the carbon intensity of the operations, resulting in an annual carbon cost savings*
- → Multiple OEMs have committed 100% H₂-capable DLN gas turbines commercially available by 2030

Carbon intensity (left) and annual carbon tax savings (right) with hydrogen blending (using GE Hydrogen Calculator)*

Current DLN H₂ capability in a blend with natural gas

DLN: Dry Low NO_x

Techno-Economic Study

$$LCOE = \frac{Sum \ of \ costs \ over \ lifetime}{Sum \ of \ electrical \ energy \ produced \ over \ lifetime}$$

LCOE has been used to compare costs of electricity production in centralized power generation plant by increasing %vol of H2 content in GT fuel blend

Blend NG-H ₂ (vol%)					
Natural Gas	100%	70%	50%	30%	0%
Hydrogen	0%	30%	50%	70%	100%

Study Assumptions

Technical parameters

- GT configuration and size
- Operating regime
- Power and efficiency
- Derating
- H₂ blending

Techno-economic study

Sensitivity analysis

- H₂ price
- Natural gas price
- Carbon price
- Operating hours

Economical parameters

- Upgrading cost
- Operating costs
- Maintenance costs
- Fuel cost
- Carbon tax

Case Studies

To analyze the impact of hydrogen in centralized power generation, Levelized Cost of Electricity (LCOE) has been calculated for the retrofit/upgrade of **5 case studies** of thermal power plants

	GT Type	GT Output (MW _e) @ISO	Configuration	Annual equivalent operating hours	Annual start and stop cycles	Designation
1	Small	20	OCGT	800	150	S-OCGT
2	Small	20	CHP	6000	10	S-CHP
3	Medium	60	OCGT	800	150	M-OCGT
4	Large	450	OCGT	800	150	L-OCGT
5	Large	450*	CCGT	6000	10	L-CCGT

^{*}CCGT output = 650 MW_e

CHP: Combined Heat and Power

OCGT: Open Cycle Gas Turbine

CCGT: Combined Cycle Gas Turbine

Levelised Cost of Electricity

LCOE of Large CCGT case

Hydrogen cost	Natural gas cost	CO ₂ price
1.5€/kg	20€/MWh	50€/ton

Case study update for 100% Hydrogen GTs

LCOE of 100%H2 GTs vs 100%NG GTs

LCOE 100%H2 @3€/kgH2
LCOE 100%H2 @1.5€/kgH2

Carbon tax

"A carbon tax is a fee imposed on the burning of carbon-based fuels".

Furopean Union: 20 €/ton_{co2} – May 2020

80 €/ton_{CO2} - 28/10/2022

United States: not implemented

China: not implemented

- Shifting to NG implies a huge reduction in CO₂ emissions
- Competing against NG is more challenging for H₂

LCOE Break-Even for Large CCGT case

Break-even: NG LCOE = 100% H₂ LCOE

1.5€/kg 20€/MWh Variable (X-axis)

LCOE Break-even for all 5 case studies

- Break-even carbon tax value higher than current by ~2x
- More efficient plants have lower break-even
 - Small-CHP does not account for the value of the heat production
- Increased natural gas price or reduced hydrogen price will improve break-even point.

Hydrogen cost	Natural gas cost	CO ₂ price
1.5€/kg	20€/MWh	As shown

Natural Gas and Hydrogen Prices

What changed?

ETN GI®bal

Natural Gas Price (Dutch TTF)

€13/MWh → €190/MWh

Today NG is **near 100 €/MWh**!

Grey and blue H₂ price is strongly affected by NG price

Most of the hydrogen today is produced from natural gas via the reaction of steam methane reforming

$$CH_4(g) + H_2O(g) \longrightarrow 3H_2(g) + CO(g)$$

Impact of natural gas price on H₂ price

For NG price above 100 €/MWh → blue H₂ price reaches > 5€/kg

→ green H₂ could become competitive with blue

^{*}assuming FTR technology operating for 8760 h @ 75% constant conversion efficiency (LHV basis) with a CCR of 80%

Case study update – Large CCGT

- 650 MW_e output
- 64% efficiency
- Example:
 - Natural gas = 200 €/MWh
 - CO₂ = 100 €/ton
 - H₂ < 7 €/kg to justify use in large CCGT (i.e., lower LCOE than 100% natural gas)

The impact of H₂ blending and price

Large CCGT Case

Natural gas cost 20 €/MWh

Hydrogen GT Roadmap

Collaboration between OEMs, energy, industrial, petrochemical sectors

Respond to changing market conditions >

An Android app for calculating LCOE and LCOH

Scan QR code

ETN Hydrogen Working Group

Chair: Peter Kutne, DLR

Co-Chair: Geert Laagland, Vattenfall

Objectives:

Accelerating the development and use of hydrogen-based gas turbine technology by:

Identifying potential barriers, and exploring:

Economic aspects & business cases

Retrofit solutions for high hydrogen-content fuel Demonstration projects

Safety aspects

Operational issues/ effects on GT components

Research needs

Exploring cooperation opportunities to ensure safe, reliable and cost-efficient solutions for existing and

Activities:

- Taskforce "GT Enclosure standard for hydrogen fuel" with the objective to develop an ISO safety standard
- Techno-economic study (Young Engineers Committee) accomplished & published
- Review paper "Addressing the combustion challenges of Hydrogen addition to Natural Gas" finalised

Working Group

The path towards a Zero-Carbon Gas Turbine Published in January 2020

Download at etn.global/hydrogen-report

ETN Key Topics, Working Groups and Projects

Air filtration WG

Hydrogen WG

Energy efficiency
Part-load efficiency
New cycles

sCO₂ WG

Operational optimization SGT-A35 & LM-2500 User groups

Fuel Flexibility Low-carbon/carbonfree fuels

Security of supply Affordability & Decentralised energy system solutions

AM Machine Evaluation Project Additive 3D Manufacturing WG

CCS/CCUS solutions

Net-zero

Decentralised Energy solutions WG

CCS Taskforce

28 October 2022 www.etn.globa

Live Q&A

ModeratorAntonio Escamilla Perejón

EU Marie Sklodowska-Curie Early Stage Researcher University of Seville

Panelists

Jon Runyon

GT Combustion Engineer Uniper

Serena Gabriele

Hydrogen Business Development Manager Baker Hughes

Daria Bellotti

Assistant Professor University of Genoa

Alessandro Castelli

PhD Student
Polytechnic University
of Milan

Lorenzo Pilotti

PhD Student
Polytechnic University
of Milan

Interested in learning more?

Download the report

Download the app

Follow us on LinkedIn

Poll Question

Which GT configuration do you believe will be the early adopter of 100% DLN hydrogen firing?

- 1. Small open cycle gas turbine (< 50 MW)
- 2. Small combined heat and power gas turbine (< 50 MW)
- 3. Medium open cycle gas turbine (50 300 MW)
- 4. Large open cycle gas turbine (> 300 MW)
- 5. Large combined cycle (> 300 MW)
- 6. Other

Results

Which GT configuration do you believe will be the early adopter of 100% DLN hydrogen firing? (1/2)

Which GT configuration do you believe will be the early adopter of 100% DLN hydrogen firing? (2/2)

Small open cycle gas turbine (<50 MW)

Small combined heat and power gas turbine (<50 MW)

Medium open cycle gas turbine (50 - 300 MW)

0 %

Large open cycle gas turbine (>300 MW)

0 %

Large combined cycle (>300 MW)

Other

LCOE of 100% Hydrogen GTs

The impact of H₂ blending and price

Small OCGT Case - 20 MW

