

ETN hydrogen techno-economic study adapted to new market conditions

Dr Jon Runyon, Uniper Chair, ETN Young Engineers Committee

Why hydrogen?

According to IEA Net Zero by 2050 report:

- 17% of global H₂ will be used for power generation
- Requiring ~90 Mt H₂/year
 - Equivalent to today's global annual H₂ production!
 - H₂ needs to be **low-carbon** or **zero-carbon**
- → Aim of the study: Identify the market conditions under which H₂ firing in a GT could become viable.

Fraction of total electricity generation attributed to H₂ generation in 2050 (from <u>European Hydrogen Backbone</u>)

Background

ETN Young Engineers Committee recently published our first main report:

"Hydrogen Deployment in Centralised Power Generation – A techno-economic case study"

- Significant market changes during 18 month study (October 2020 – April 2022) – sensitivity analysis included in report.
- Further changes to energy markets since April 2022.

Download now!

Scan QR code

Reference case studies

- Open cycle, combined cycle, and combined heat and power GTs
- Cycle output from 20 MW to 650 MW
- Hydrogen blends in natural gas from 0 to 100% (by volume)
- Hydrogen price from €0.50/kg to €4.00/kg
- Carbon price from €50/ton to €325/ton

Reference case:

Hydrogen: €1.50/kg Natural gas: 20€/MWh CO₂ price: 50 €/ton

What changed?

Natural Gas (Dutch TTF)

Carbon (EU ETS)

Impact of natural gas price on H₂ price

For NG price above 100 €/MWh → blue H₂ price reaches > 5€/kg and green H₂ could become competitive with blue

However, with these fuel cost overall generation price will increase, meaning an additional burden for consumers

^{*}assuming FTR technology operating for 8760 h @ 75% constant conversion efficiency (LHV basis) with a CCR of 80%

- 650 MW output
- 64% efficiency
- Example:
 - Natural gas = 200 €/MWh
 - CO₂ = 100 €/ton
 - H₂ < 7 €/kg to justify use in large CCGT (i.e., lower LCOE than 100% natural gas)

Case study update for 100% Hydrogen GTs

Hydrogen GT roadmap still applies!

Collaboration between OEMs, energy, industrial, petrochemical sectors

Want to learn more?

- Attend our virtual panel session and Q&A, hosted by the Young Engineers Committee report authors
- 28th October 2022, 12:00 13:00 CEST
- Official side event of European Hydrogen Week 2022!

Register now!

Scan QR code

Respond to changing market conditions

The YEC (led by Antonio Escamilla) released an Android app for calculating LCOE and LCOH

And finally...

- "Thank you!" to study co-authors and supporters:
 - Daria Bellotti, Serena Gabriele, Lorenzo Pilotti, Alessandro Castelli, Alireza Kalantari
 - ETN Hydrogen Working Group

Questions?

LCOE of 100% Hydrogen GTs vs 100%NG GTs

--- LCOE 100%H2 @3€/kgH2 --- LCOE 100%H2 @1.5€/kgH2

- 20 MW output
- 36.5% efficiency
- Increase in natural gas and carbon price reduces the hydrogen cost (diagonal) required to achieve LCOE parity with unabated natural gas.
- For example:
 - NG = 200 €/MWh
 - CO₂ = 100 €/ton
 - H₂ < 7 €/kg to justify use

