

Addressing the combustion challenges of hydrogen addition to natural gas

ETN Hydrogen Combustion Working group, Felix Güthe, Dr D Abbott

Hydrogen combustion sub-group

Motivation

- The following question was posed to the ETN Hydrogen Working Group:
 - Is there any fundamental reason why a well-optimised hydrogen flame should produce more NOx than a natural gas flame with the same flame temperature?
- This led to the follow up question:
 - What are the fundamental combustion differences between natural gas and hydrogen?
- A committee of specialists was formed to address these questions and their implications for gas turbine operation
- A paper outlining the findings is in the final stages of preparation

ETN Gi®bal

NO_x emissions with H₂ and CH₄

- Comparing varying fuels:
- The high reactivity of the H₂ often leads to higher NO_x emissions
 - Is it more difficult to burn H₂? Thermal NO_x, Mixing, residence time, ...
 - Do we have the right emission developing targets ?

$$[NO]_{15\%O_{2}} = \frac{(21\% - 15\%)}{(21\% - [O_{2}])} \cdot [NO]_{abs} \qquad \qquad \text{EMI_NO}_{x} = \frac{[\text{NO}_{x}] \cdot \text{M(NO}_{2})}{\text{kg(fuel)}} = \frac{\text{g(NO}_{2})}{\text{kg(fuel)}}$$

$$\text{EMI_J_NO}_{x} = \frac{[\text{NO}_{x}] \cdot \text{M(NO}_{2})}{\text{MJ(fuel)}} = \frac{\text{g(NO}_{2})}{\text{MJ(fuel)}}$$

- Energy released per O₂ [kJ / mol]: > 20% higher H₂ for CH₄
 - →For given power less O₂ consumed

Impact of hydrogen on emissions corrections

Combustion of 1 mole of methane:

•
$$CH_4 + M(air) \rightarrow CO_2 + 2H_2O + M(air) - 2O_2 + XNO_X$$

Combustion of R moles of hydrogen will have same thermal energy as 1 mole of methane if:

- $R = LCV(CH_4)/LCV(H_2) = 3.3194$
- $RH_2 + M(air) \rightarrow RH_2O + M(air) RO_2/2 + XNO_X$
- > Combustion product compositions (assuming X is small)

	CH₄	H_2
Moles of products (wet)	M+1	M+R/2
Moles H₂O in product	2	R
Moles of products (dry)	M-1	M-R/2
Moles O ₂ in products	0.2089M-2	0.2089M-R/2
Moles of NOx in Products	X	X
Energy released per O2	401.4 kJ / mol	483.7kJ / mol

Gives ratio of corrections for hydrogen to methane:

$$\frac{C_{H2}}{C_{CH4}} = \begin{bmatrix} 1 - \frac{2}{(M+1)} \\ 1 - \frac{R}{(M+R/2)} \end{bmatrix} \begin{bmatrix} 0.2089 - \frac{(0.2089M-2)}{(M-1)} \\ 0.2089 - \frac{(0.2089M-R/2)}{(M-R/2)} \end{bmatrix} \begin{bmatrix} (M+1) \\ (M+R/2) \end{bmatrix}$$
Ratio of wet to dry corrections
$$\begin{bmatrix} Ratio \text{ of oxygen} \\ Corrections \end{bmatrix}$$
Ratio of oxygen correction for raw concentration

For DLN-GT ~7%

$$^{\sim}31\%$$
 and $^{\sim}-3\%$ \rightarrow 36%

> Simplifies to:
$$\frac{C_{H2}}{C_{CH4}} = \frac{4.5281}{R} = 1.364$$

- NOx emissions corrected to 15%O₂, dry, results in emissions levels for hydrogen being 36.4% higher than for methane when the same number of moles of NOx are produced per unit of energy input
- ➤ Needs to be taken into account when assessing data and in allowable emissions levels

Impact of hydrogen addition on NOx

Measurements Practical GT Combustors

 Measurements on current gas turbine combustors indicate a significant increase in NOx as hydrogen is added to natural gas

ETN Gl®bal

Impact of hydrogen addition on NOx

NOx Emissions at various flame temperatures in a 1D unstretched laminar premixed flame normalized by NOx of a pure methane case calculated using the Glarborg mechanism. (Residence time = 15ms, pressure = 20bara, reactant temperature = 450 °C)

- Results quoted on a corrected basis appear to give a significant increase
- Results on a mass basis (uncorrected) show little or no increase depending on flame temperature
 - Temperatures above 1750K show a small decrease
 - Other studies (e.g. [4] also suggest a decrease)

Why is NOx greater for a practical combustor?

- In a premixed flame, NOx depends on:
 - Chemical Kinetics
 - Flame location
 - Unmixedness of air fuel at flame front
 - Flame residence time
 - Post flame residence time

Adding hydrogen:

Flame images from [5]

- Affects fuel/air momentum and thus fuel placement and mixing
- Higher reactivity increases flame speed, moves flame upstream, reducing mixing time and increasing unmixedness
- Higher reactivity reduces flame residence time which could reduce NOx generation within the flame
- Post flame residence time increases, negating benefit of lower flame residence time

ETN Gl®bal

NO_x emission target - summary

- 1. Yes. It is more difficult to operate H₂ in DLN Premix mode compared to CH₄
- 2. The NO_x calibration account for up to 36% at pure H₂
- 3. Chemistry changes but does not cause a NO_x increase
- 4. The flame physics (reactivity) is a challenge

Reactivity, Flame Speed and Flashback

- Hydrogen increases reactivity
 - Increased flame speed
 - ➤ Change in flame position
 - > Increased flashback risk
 - ➤ Change in thermoacoustic behaviour

In practical GT combustors flow is turbulent

- Turbulent flame speed is related to laminar flame speed, but:
 - Measurements show greater impact of hydrogen on turbulent flame speed
 - This shows that kinetics is not the only impact
 - Other physical properties such as diffusivity also have an impact

Increased reactivity is a major concern when firing hydrogen or hydrogen containing fuels

Turbulent Flame Speed correlation

H₂ addition at constant inlet and flame temperatures

S_T increases more at lower H₂ content than S_L

ETN Gl®bal

Combustion technologies for hydrogen

- To cover the full range of hydrogen content from 0 to 100% likely to need
 - Redesign of combustion systems
 - ➤ Development of new combustion technologies
 - > Development of automatic tuning systems taking into account hydrogen content
 - ➤ Use of exhaust cleaning systems (e.g. SCR) for lowest NOx
- A overview of some potential combustion technologies is given on the next two slides

Combustion technologies for hydrogen (1)

Conventional or diffusion combustor

- Robust, stable and fuel flexible: capable of burning high hydrogen fuels
- High NOx unless diluent injection such as water or steam is used
- Main technology offered today for 100% hydrogen combustion.

Lean premixed combustors

- Dominant technology for natural gas combustion.
- Low NOx firing natural gas
- Issues with thermoacoustics
- Flashback risk with high reactivity fuels such as hydrogen
- Allowable hydrogen concentration depends on design details
- Unlikely that current systems can fire high hydrogen concentrations without re-design.

Combustion technologies for hydrogen (2)

Sequential combustion

- Different fuel stages arranged axially
- Used to reduce initial flame temperature to reduce NOx improves fuel flexibility

Micro-injection combustors

- Many small flames
- Low NOx due to the short residence
- Diffusion-based and premixed-based concepts are under development
- The term "micromix" sometimes used to refer to both concepts

Combustion technologies for hydrogen (3)

ETN G@bal

MILD combustion or Flameless oxidation

- Uses highly diluted oxygen depleted oxidiser instead of air
- Reactant temperature high, peak flame temperature relatively modest
- Leads to low NOx formation and reduced flashback risk
- Dilution and oxygen depletion achieved in a number of ways including exhaust gas recirculation and humid air cycles

Trapped vortex combustors

- Utilises a vortex typically trapped within a cavity
- Fuel is injected into the trapped vortex
- Efficient and rapid mixing of reactants and recirculated combustion products
- Combustion conditions typical of flameless oxidation

Summary of Conclusions and Recommendations

- Emissions standards and legislation
 - Hydrogen is disadvantaged by NOx emissions in mg/m³ or ppmv corrected to dry, 15% O₂:
 - Requirements should be on a mass production of NOx basis per unit of fuel energy used (e.g. mg/MJ) or allowance made if corrected values are retained
 - No kinetic reason why H₂ should produce more NOx than NG, but other processes need optimisation
- Key areas for R&D

High reactivity of hydrogen and its impact on combustion behaviour including flame position/flashback, thermoacoustics and NOx emissions will require research into:

- Development and validation of tools and methods
- Fundamental processes
- Refinement of existing technologies and development of new concepts
- Practical demonstrations and field trials
- Supporting technologies: cooling, materials, safety, acoustic treatments, controls, flue gas treatments...
- Infrastructure development and RD&D

To be able to focus research on appropriate issues and to ensure hydrogen is available for large scale testing:

Clarity needed regarding future strategies on blending, storage and hydrogen production

References

- [1] Hydrogen for power generation: Experience, requirements, and implications for use in gas turbines, GE document GEA34850
- [2] Laget et al, DEMONSTRATION OF NATURAL GAS AND HYDROGEN CO-COMBUSTION IN AN INDUSTRIAL GAS TURBINE, Proceedings of ASME Turbo Expo 2022, Turbomachinery Technical Conference and Exposition, GT2022, June 13-17, 2022, Rotterdam, The Netherlands, Paper: GT2022-80924
- [3] Ciani et al, HYDROGEN BLENDING INTO ANSALDO ENERGIA AE94.3A GAS TURBINE: HIGH PRESSURE TESTS, FIELD EXPERIENCE AND MODELLING CONSIDERATIONS, Proceedings of ASME Turbo Expo 2021, Turbomachinery Technical Conference and Exposition, GT2021, June 7-11, 2021, Virtual, Online, Paper: GT2021-58650
- [4] Breer et al NOx Production from Hydrogen-Methane Blends, Spring Technical Meeting, Eastern States Section of the Combustion Institute, March 6-9, 2022, Orlando, Florida.
- [5] Muppala et al, COMPARATIVE STUDY OF DIFFERENT REACTION MODELS FOR TURBULENT METHANE/HYDROGEN/AIR COMBUSTION, Journal of Thermal Engineering, Volume 1, Issue 5, Pages 367 3801, February 2015
- [6] Boschek et al, FUEL VARIABILITY EFFECTS ON TURBULENT, LEAN PREMIXED FLAMES AT HIGH PRESSURES, Proceedings of GT2007, ASME Turbo Expo 2007, Paper GT2007-27496

Thank you for your attention

Felix Güthe

felix.guethe@phoenixbiopower.com

Dr D Abbott

e-mail: d.abbott@cranfield.ac.uk