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Hydrogen combustion sub-group

▪ The following question was posed to the ETN Hydrogen Working Group: 
▪ Is there any fundamental reason why a well-optimised hydrogen flame should 

produce more NOx than a natural gas flame with the same flame temperature?

▪ This led to the follow up question:
▪ What are the fundamental combustion differences between natural gas and 

hydrogen?

▪ A committee of specialists was formed to address these questions and their 
implications for gas turbine operation

▪ A paper outlining the findings is in the final stages of preparation
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Motivation



NOx emissions with H2 and CH4

▪ Comparing varying fuels: 

▪ The high reactivity of the H2 often leads to higher NOx emissions 
▪ Is it more difficult to burn H2 ?  Thermal NOx,  Mixing, residence time, …

▪ Do we have the right emission developing targets ?

▪ Energy released per O2 [kJ / mol]: > 20% higher H2  for CH4   

▪ →For given power less O2 consumed
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➢ Gives ratio of corrections for hydrogen to 
methane:

➢ Simplifies to:

➢ NOx emissions corrected to 15%O2, dry,  
results in emissions levels for hydrogen being 
36.4% higher than for methane when the same 
number of moles of NOx are produced per unit 
of energy input

➢ Needs to be taken into account when assessing 
data and in allowable emissions levels

Impact of hydrogen on emissions corrections
Combustion of 1 mole of methane:

▪ CH4 + M(air)  →  CO2 + 2H2O + M(air) - 2O2 +XNOX

Combustion of R moles of hydrogen will have same thermal 
energy as 1 mole of methane if:

▪ R = LCV(CH4)/LCV(H2) = 3.3194

▪ RH2 + M(air)  →  RH2O + M(air) - RO2/2  +XNOX

➢ Combustion product compositions (assuming X is small)
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CH4 H2

Moles of products (wet) M+1 M+R/2

Moles H2O in product 2 R

Moles of products (dry) M-1 M-R/2

Moles O2 in products 0.2089M-2 0.2089M-R/2

Moles of NOx in Products X X

Energy released per O2 401.4 kJ / mol 483.7kJ / mol

𝐶𝐻2
𝐶𝐶𝐻4

=
4.5281

𝑅
= 1.364 

 

For DLN-GT  ~7% ~31% and  ~ -3% → 36%



Impact of hydrogen addition on NOx

▪ Measurements on current gas turbine combustors indicate a significant 
increase in NOx as hydrogen is added to natural gas 
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Measurements Practical GT Combustors
Rig tests on GE Combustors

from [1]

On-engine measurements Siemens SGT-600

from [2]

Some of the increase in 

NOx could be recovered 

by re-tuning



Impact of hydrogen addition on NOx
NOx Emissions at various flame temperatures in a 1D unstretched laminar premixed flame 

normalized by NOx of a pure methane case calculated using the Glarborg mechanism. 

(Residence time = 15ms, pressure = 20bara, reactant temperature = 450 °C)
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Plot from [3]

▪ Results quoted on a corrected basis appear to give a significant increase

▪ Results on a mass basis (uncorrected) show little or no increase depending on flame temperature
▪ Temperatures above 1750K show a small decrease 

▪ Other studies (e.g. [4] also suggest a decrease)



Why is NOx greater for a practical combustor?

▪ In a premixed flame, NOx depends on:

▪ Chemical Kinetics

▪ Flame location

▪ Unmixedness of air fuel at flame front

▪ Flame residence time

▪ Post flame residence time

▪ Adding hydrogen:

▪ Affects fuel/air momentum and thus fuel placement and mixing

▪ Higher reactivity increases flame speed, moves flame upstream, reducing mixing time and increasing 
unmixedness

▪ Higher reactivity reduces flame residence time which could reduce NOx generation within the flame

▪ Post flame residence time increases, negating benefit of lower flame residence time
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Flame images from [5]



NOx emission target - summary

1. Yes. It is more difficult to operate H2 in DLN Premix mode compared to 
CH4

2. The NOx calibration account for up to 36% at pure H2

3. Chemistry changes but does not cause a NOx increase

4. The flame physics (reactivity) is a challenge 
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Reactivity, Flame Speed and Flashback

▪ Hydrogen increases reactivity 

➢ Increased flame speed

➢Change in flame position

➢ Increased flashback risk

➢Change in thermoacoustic behaviour

In practical GT combustors flow is turbulent 

▪ Turbulent flame speed is related to laminar 
flame speed, but:

▪ Measurements show greater impact of 
hydrogen on turbulent flame speed

▪ This shows that kinetics is not the only impact

▪ Other physical properties such as diffusivity also 
have an impact
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Plot from [6]

Increased reactivity is a major 

concern when firing hydrogen 

or hydrogen containing fuels



Turbulent Flame Speed  correlation 
H2 addition at constant inlet and flame temperatures

ST increases more at lower H2 content than SL
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Combustion technologies for hydrogen 

▪ To cover the full range of hydrogen content from 0 to 100% likely to need

➢ Redesign of combustion systems

➢Development of new combustion technologies

➢Development of automatic tuning systems taking into account hydrogen content

➢Use of exhaust cleaning systems (e.g. SCR) for lowest NOx

▪ A overview of some potential combustion technologies is given on the next 
two slides
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Combustion technologies for hydrogen (1)
Conventional or diffusion combustor

▪ Robust, stable and fuel flexible: capable of burning high 

hydrogen fuels

▪ High NOx unless diluent injection such as water or steam is 

used

▪ Main technology offered today for 100% hydrogen combustion.

Lean premixed combustors

▪ Dominant technology for natural gas combustion. 

▪ Low NOx firing natural gas 

▪ Issues with thermoacoustics

▪ Flashback risk with high reactivity fuels such as hydrogen 

▪ Allowable hydrogen concentration depends on design details

▪ Unlikely that current systems can fire high hydrogen 

concentrations without re-design. 
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Combustion technologies for hydrogen (2)
Sequential combustion

▪ Different fuel stages arranged axially

▪ Used to reduce initial flame temperature to reduce NOx 

improves fuel flexibility

Micro-injection combustors

▪ Many small flames

▪ Low NOx due to the short residence

▪ Diffusion-based and premixed-based concepts are under

development

▪ The term “micromix” sometimes used to refer to both concepts
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Combustion technologies for hydrogen (3)
MILD combustion or Flameless oxidation

▪ Uses highly diluted oxygen depleted oxidiser instead of air

▪ Reactant temperature high, peak flame temperature relatively

modest

▪ Leads to low NOx formation and reduced flashback risk

▪ Dilution and oxygen depletion achieved in a number of ways

including exhaust gas recirculation and humid air cycles

Trapped vortex combustors

▪ Utilises a vortex typically trapped within a cavity

▪ Fuel is injected into the trapped vortex

▪ Efficient and rapid mixing of reactants and recirculated

combustion products

▪ Combustion conditions typical of flameless oxidation
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Summary of Conclusions and Recommendations

▪ Emissions standards and legislation

Hydrogen is disadvantaged by NOx emissions in mg/m3 or ppmv corrected to dry, 15% O2:

▪ Requirements should be on a mass production of NOx basis per unit of fuel energy used (e.g. mg/MJ) or 

allowance made if corrected values are retained

▪ No kinetic reason why H2 should produce more NOx than NG, but other processes need optimisation

▪ Key areas for R&D
High reactivity of hydrogen and its impact on combustion behaviour including flame position/flashback,

thermoacoustics and NOx emissions will require research into:

▪ Development and validation of tools and methods

▪ Fundamental processes

▪ Refinement of existing technologies and development of new concepts

▪ Practical demonstrations and field trials

▪ Supporting technologies: cooling, materials, safety, acoustic treatments, controls, flue gas treatments…

▪ Infrastructure development and RD&D

To be able to focus research on appropriate issues and to ensure hydrogen is available for large scale testing: 

▪ Clarity needed regarding future strategies on blending, storage and hydrogen production
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Thank you for your attention

Felix Güthe

felix.guethe@phoenixbiopower.com

Dr D Abbott

e-mail: d.abbott@cranfield.ac.uk
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Power generation gas turbine will play a role in the 
transition to a low carbon future, but combustion 
developments are needed to ensure reliable and 
efficient operation with acceptable emissions.


