

Suitability of Liquid Biofuels in Solar® Turbines Incorporated DLE Industrial Gas Turbines

ETN 10th International Gas Turbine Conference

Paper ID Number: 36-IGTC21

Authors: Priyank Saxena, William C. Steele, Luke H. Cowell

Solar Turbines Incorporated

Email: Saxena Priyank@solarturbines.com

Acknowledgements:

National Biodiesel Board and United Soybean Board

Copyright © 2021 by Solar Turbines Incorporated

About Solar Turbines

Subsidiary of Caterpillar Inc. **Since 1981**

16,000+

Gas Turbines Sold

6,500+

Gas Compressors Sold

Global Workforce

8,000+ Employees

100+
Countries

Direct End-to-End Sales and Service

Sales and Service Locations

Solar's Carbon Reduction Solutions

Operational Efficiency

Upgrades & retrofits

- Condition based lifing
- Electrification
- Digital optimization
- Cogeneration

Methane Abatement

- Flare reduction
- Methane capture and recompression

Fuel Flexibility

- High-H₂
 Renewable fuels
- Associated gases

Carbon Capture, Use & Storage

 Supporting customer pilot projects

Enhanced digital carbon reduction tools

- Super-critical CO₂
- "Virtual" pipeline
- Leak detection

- High-H₂ dry low emissions
- Gas compressor readiness
- H₂ package readiness
- Exhaust recirculation
- Carbon Capture
- CO2 Compression

Solar Turbines

A Coterpillar Company

Available Now

Developing

Powering the Future

AGENDA

- Motivation
- Objective of paper
- Test rig description
- Biodiesel properties and risks
- Biodiesel rig test results and discussions
- Conclusions

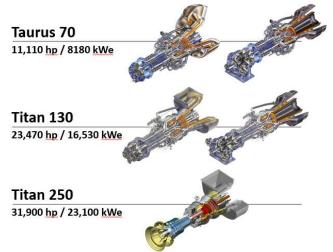
Motivation

- Bio-fuels for low carbon power generation
- B100 provides ~80% reduction in CO2 on its lifecycle basis
- Government mandates in power generation (eg. Indonesia, Malaysia)
- Renewable fuels incentives in the USA
- Carbon footprint reduction by university campuses

B20: 20% Biodiesel

B50: 50% Biodiesel

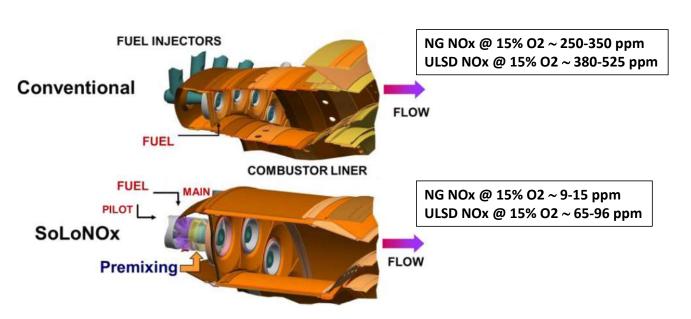
B100: 100% Biodiesel

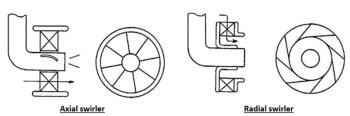


Objectives

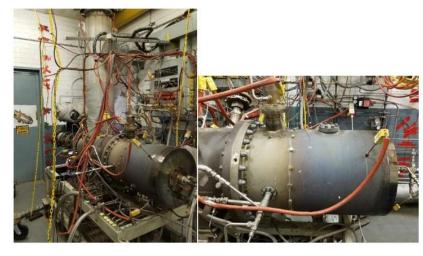
- Single injector tests in high pressure rig using B20 and B50 fuels.
- Tests with Titan[™] 250 (radial flow), Titan[™] 130 (axial flow), and Taurus[™] 70 (axial flow) SoLoNOx[™] injectors

	Compressor Discharge Pressure (psig)	Compressor Discharge Temperature (°F)
Titan 250	328.0	885.9
Titan 130	236.3	809.0
Taurus 70	219.4	807.7

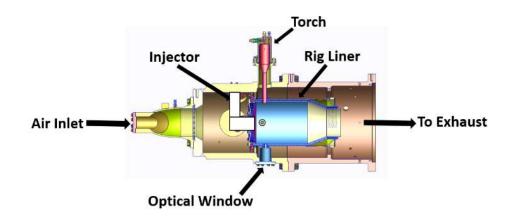



• Emissions (NOx, CO, UHC, Smoke) and injector coking

Combustion Systems



Schematics of axial and radial swirlers


Comparison of Conventional and Dry Low Emissions (SoLoNOx) Combustion Systems

Test Rig Description

The single injector rig installation located at Solar Turbines combustion test facility.

The cross section of the single injector rig

• Rig tests conducted at simulated engine conditions

Biodiesel Properties and Risks

- Renewable Energy Group (REG) supplied BQ-9000 certified B20 and B50 fuels, where biodiesel used for bending complied ASTM 6751 and EN 14214 specs
- Small increase in density, viscosity, and distillation raises risk of poor atomization, vaporization and fuel-air mixing, potentially resulting in higher emissions
- Potential increase of carbon deposits in injectors due to Fatty Acid Methyl Esters (FAME)
 - Is biodiesel (FAME) quality sufficient for gas turbine needs?
- Startup Light-Off Risk
 - Negligible risk with B20 based on the comparison of DF#2 and B20 distillation temperature curves
 - B50 distillation curve slightly higher than B20

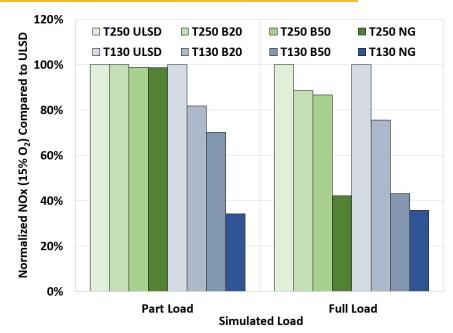
The above risks were addressed in the rig tests

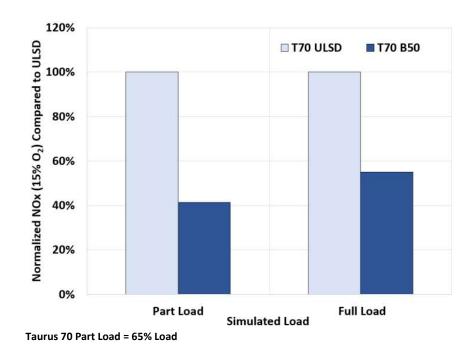
Biodiesel Properties and Risks

Other biodiesel risks listed below were not investigated in the rig tests, but were evaluated based on the fuel properties

- Fuel degradation and microbial growth.
 - Oxidation stability. Limit on storage time or implement periodic monitoring.
- Material incompatibility (Copper, brass, bronze, lead, tin, zinc)
 - B20 poses negligible risk
- Solvent properties (elastomers, tank residues, filters)
 - Potential seal degradation. Will centrifuge be needed for particulates?
- Phosphorus present as phospholipids (bonded with HC).
 - Is biodiesel (FAME) phosphorous level sufficient for gas turbine needs?
- Free water and Na+K can cause hot corrosion
 - Is biodiesel water and Na+K level sufficient for gas turbine needs? Will centrifuge be needed?

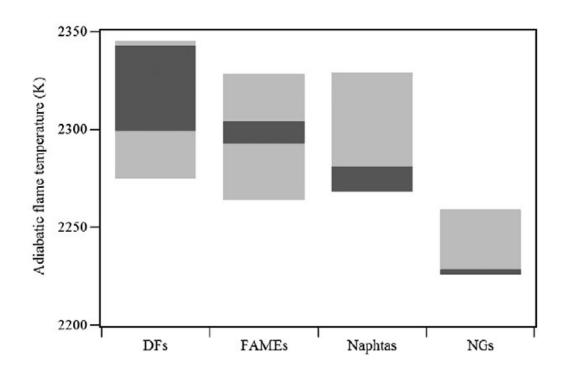
The risks not investigated in the rig tests, but evaluated based on fuel properties


Solar Turbines


AGENDA

- Motivation
- Objective of paper
- Test rig description
- Biodiesel properties and risks
- Biodiesel rig test results and discussions
- Conclusions

Impact on NOx Emissions

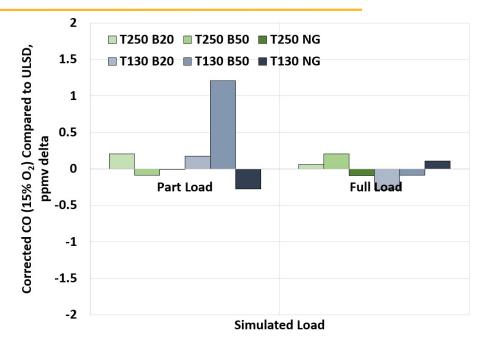

Titan 130 Part Load = 60% Load Titan 250 Part Load = 40% Load

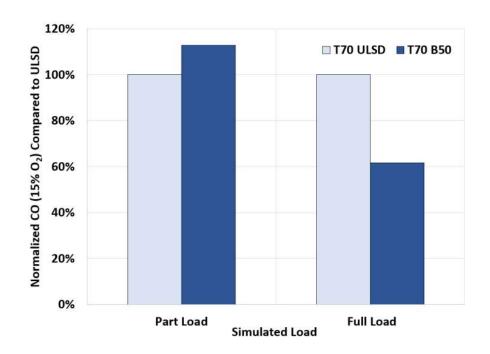
- Biodiesel blends produce fewer NOx than ULSD at similar conditions
 - NOx generation decreased from B20 to B50
 - T250S: Decrease in NOx within measurement uncertainty

Solar Turbines

Impact on NOx Emissions

- Adiabatic flame temperature of fuels at 300 K, 1 atm. (Light color represents T_f range covered by the complete set of species contained in each fuel, dark grey represents T_f range covered by the most abundant components.)
- Droplet diameter and vaporization temperature have an effect on T_f as well.

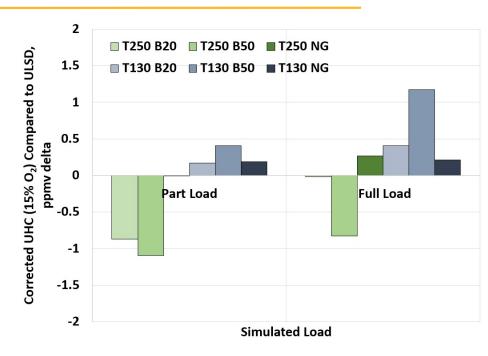



Reference: Pierre-Alexandre Glaude, René Fournet, Roda Bounaceur, Michel Molière, "Adiabatic flame temperature from biofuels and fossil fuels and derived effect on NOx emissions", Fuel Processing Technology 91 (2010) 229–235

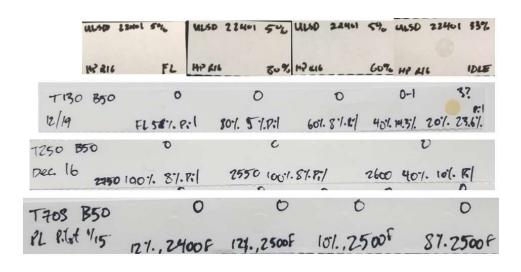
Solar Turbines

13

Impact of CO Emissions



Titan 130 Part Load = 60% Load Titan 250 Part Load = 40% Load


- CO below 5ppm across SoLoNOx range
- T130 and T70 Part Load CO increased (~1ppm) with biodiesel content within measurement uncertain Mitigation: Increase primary zone flame temperature at part load to counteract lower flame temperature

Solar Turbines

Impact on UHC and Smoke Emissions

- UHC remain low throughout SoLoNOx range
- Measurement uncertainty at <2ppm

No smoke across SoLoNOx range on T70, T130, T250

- 0 on Bacharach
- 2-3 smoke found at "Idle" loads on T130
 - Comparable to ULSD

Impact on Injector Coking – Titan 250

No significant carbon deposits observed

Impact on Injector Coking – Titan 130

No significant carbon deposits observed

Impact on Injector Coking – Taurus 70

No significant carbon deposits observed

Rig Test Results – B20 & B50 Conclusions

- B20 vs ULSD
 - Physical and Chemical Properties within Solar's fuel spec
- T130, T250
 - Similar or lower emissions
 - NOx, CO, UHC, smoke
 - Insignificant carbon buildup on T130, none on T250

- B50 vs ULSD
 - Physical and Chemical Properties within Solar's fuel spec
- T130, T250
 - Similar or lower emissions
 - NOx, CO, UHC, smoke
 - No significant carbon buildup
- Taurus 70
 - Similar NOx, UHC, smoke
 - Increased CO at part load

Fuel Sourcing, Storage and Handling

Fuel sourcing

BQ9000 approved (ASTM D7467 & ASTM D6751)

Fuel storage

- Shelf life
- Impact of additives on the engine performance and durability?

Fuel handling

- Centrifuge to reduce impurities
- Pre-heating to prevent cold flow issues
- Use compatible materials
- Periodic fuel tests

Future Work

- Engine tests with B20 and B50
 - Actual emissions (NOx, CO, UHC) levels
 - Thermo-acoustic oscillations characteristics
- Rig and engine tests with B100

THANK YOU

Solar Turbines