Early Experience Applying PCRT to Turbine Blade Quality Assurance

J. Scheibel, N. Smith, EPRI E. Biedermann, R. Livings, G. Gatewood, Vibrant Corp.

ETN 10th International Gas Turbine Conference 11-15 October 2021

Image: marked black with the second black with th

Gas Turbine Quality

Complex International Supply Chain

6 Sigma Quality Standards

Low Production

Increasing Supplier Deviation Reports

New and Innovative Quality?

Quality standards for custom single crystal alloys and additively manufactured parts are trailing

Service/Parts Agreements

Widely Spread and Growing

Risk vs. Quality Balance

BUT...

VERIFY

TRUST

Process Compensated Resonance Testing (PCRT) Rapid Component Quality Screening

Adopting Quality Verification from Other Industry

- General new and refurbished component quality concerns
- Adapt Process Compensated Resonant Testing used on aircraft engines to industrial gas turbine components
- Test sets of components and material specimens with controlled defects

Turbine Blade Over-Temperature Evaluation

Delta Technical Operations

- P&W JT8D-219 commercial engines prone to over-temperature incidents
- PCRT offers increased sensitivity to defects, less engine down time and reduced waste
- PCRT was added in 2009 for prescreening over-temperature blades
- FAA approved PCRT in 2010
- Reduced Engine Inspection Costs by Nearly \$2M Annually

Delta Airlines facility manager spoke at EPRI meeting in 2017

DELTA

TechOps

Detecting Aircraft Gas Turbine Blade Anomalies with PCRT

- Targeted anomaly detection trained for:
 - Over temperature
 - Thin Wall
 - Inter-Granular Attack
 - Cracking
- Replaced destructive sample cut-up
- Allowed salvage of previously rejected blades
- Reduced inspection bottleneck

www.epri.com

Operational results w/PCRT - Stellar JT8D T1 Blade Pareto

Standards and Approvals for PCRT

<u>ASTM Standard Guide E2001-18</u> – Outlines capabilities and applications of several resonant inspection methods

<u>ASTM Standard Practice E2534-15</u> – Describes auditable method for application of PCRT Targeted Defect Detection inspection

<u>ASTM Standard Practice E3081-16</u> – Describes auditable method for application of PCRT Outlier Screening inspection

<u>Federal Aviation Administration Approved</u> – Since July of 2010 for the detection of micro-structural changes indicating over-temp of turbine blades (JT8D-219 HPT)

AS9100D & ISO9001:2015 – Certificate #10928 issued by PRI Registrar

PCRT Solutions

- Process <u>Compensated</u> <u>Resonance</u> <u>Testing</u> = Using resonance frequency measurements to:
 - Compare a part to a target (qualification) population, assure part consistency
 - Screen for outliers and/or specific defect conditions
 - Correlate to processing variables and/or material properties
 - Evaluate changes in a part, due to critical process operations (HT, HIP, repair, service, etc.) or over the part's life time

Recommended Areas of PCRT Testing for IGT

Blade types of Advanced F class and above

Blades undergoing novel repairs

Blades undergoing extensive/heavy repairs

Blades undergoing rejuvenation heat treatments

Blade groups of mixed or unknown prior service histories

Qualification of new repair service vendor or otherwise inexperienced with the specific component repair

Building an EPRI GT Component Quality Database

Building a database

- Collect resonance spectrum for each part
- Group by part type
 - Identify consistent resonance modes
 - Store N frequencies (f) for each part

Using the database

- Use stored frequencies in statistical analyses
 - Disk characterization
 - Population characterization
- Collect future part spectra for comparison
 - <u>Part-to-Itself (PTI)</u> analysis to characterize a process such as repair

	Mode 1	Mode 2	Mode 3	••••	Mode N				
Part 1	f _{1,1}	f _{1,2}	f _{1,3}		$f_{1,N}$				
Part 2	f _{2,1}	f _{2,2}	f _{2,3}		f _{2,N}				
Part 3	f _{3,1}	f _{3,2}	f _{3,3}		f _{3,N}				
:	:	:	÷	۰.	:				
Part M	f _{M,1}	f _{M,2}	f _{M,3}		f _{M,N}				

Example Frequency Database

Example Spectra Stack

Example: Analysis of New 3rd Stage 7FA.04 Blades

- 184 total blades examined
- 168 nominal parts
 - Cluster exhibits moderate spread → multiple clusters with overlap.
- 7 obvious outliers
 - Part K3FP117550 is a drastic outlier and exhibits a Z-score difference larger than the vast majority of outliers.

9 borderline parts

Why is a Part an Outlier?

- Shrink
- Crack
- Dimensions
- Core Shift
- Inclusion
- Lack-of-fusion
- Heat treatment
- Boiling porosity
- Creep
- Grain Angle
- Twist
- Material
- Inconsistent build parameters
- Material oxidation

Life-cycle of Gas Turbine Blades

New Blades – Use PCRT to identify outliers

www.epri.com

Service-run Blades – Use PCRT to identify candidates to repair or replace

Repaired Blades – Use PCRT to monitor repair process

Analysis of 7HA.02 Stage 3 Population – Merged

Parts examined

- Current Parts
 - 2 disk sets, 160 blades total
 - Service Run condition
- Previous Parts
 - 4 disk sets, 320 blades total
 - New Condition
- Population characterization
 - New blades are the reference set
 - Service Run blades in casting lot T3CP drift significantly higher in Average Z
 - Casting lot T3CM does not significantly change
- Interpretation
 - T3CP and T3CM casting lots come from different suppliers
 - Casting lot T3CP shows a larger aging effect than casting lot T3CM
 - Consistent with T1CP and T2CP casting lots

- Continues trend with 'CP' supplier
- Casting lot T3CM shows minimal change
- It is possible that the materials from the separate suppliers react differently to operational loading

Analysis of 7HA.02 Stage 3 Population – Merged

PTI = Part-to-Itself

- Measure a part before and after an event
 - Service Cycle
 - Repair
 - Critical Processing Operation
 - HT
 - Coating
 - Hardening
 - HIP
 - Rejuvenation
- Evaluate the change
- Compare to expectations

7FA Changes in OEM Rejuvenation Heat Treatment

- OEM changed rejuvenation heat treatments on S3B
- Member had experienced several S3B failures and needed to validated the rejuvenation
- PCRT validated the microstructural changed in effective stiffness with new HT process

Introduction to Targeted Defect Sort

- Vibrational Pattern Recognition (VIPR, Vibrant Corp.)
 - Proprietary pattern recognition algorithm
 - Developed to target specific defects and determine the combination of resonance frequencies that are most diagnostic of the defect
 - Based on the Mahalanobis-Taguchi System (MTS)
- This is a machine learning algorithm and must be trained
 - Needs statistically significant populations
- A typical VIPR solution provides a scatter plot of x-y ordered pairs (Bias, MTS) for each part
 - Passing parts will have negative values in both Bias and MTS (quadrant III)
 - Failing parts will have a positive value in the Bias, MTS, or both
- Interpretation
 - MTS dissimilarity from the good population
 - Bias similarity to the bad population

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Targeted Defect Sort – AM Tip Repair

Fully Built AM Blades

- 5 Builds
- Builds 1-4 had 5% porosity in the top 2mm of the blade tip
- Build 5 was a 'gross' example with 2.5% porosity for the top 20mm of the blade tip

Using VIPR, the nominal and parts with porosity were 98% successfully separated

- 1 'Nominal' part failed
 - Part was a 'corner' part on the build, may not have been robust

AM Built Turbine Blades with Tip Porosity VIPR Plot

NDE Inspection Technique Toolbox

Comparison of NDE techniques for inspection of IGT components

Each method has areas of strength and weakness

No one method to replace all other methods

www.epri.com

	-			-	
	UT	ET	MT/PT	RT	PCRT
Defect Types					
Material Property	1	1	1	1	3
Process Variation	2	2	1	2	3
Structural Defect	3	3	3	3	3
Crack Indications	3	3	3	2	2
Porosity/Voids	2	3	3	2	2
Defect Location					
External	3	3	3	1	3
Internal	3	1	1	3	3
Locating Defect	3	3	3	2	1
Economics					
Speed	3	2	2	1	3
Cost	1	2	2	1	3
Training	2	1	1	1	2

- Fair applicability/capability
- High applicability/capability

EPRI NDE and Dimensional Characterization

- Dimensional:
 - Laser scanning
 - Blue light scanning (new)
- Visual/Surface
 - Borescopes
 - Dye Penetrant
 - Eddy current & advanced electromagnetics
- Volumetric
 - Ultrasonics technologies
 - Process Compensated Resonance Testing (PCRT)
 - Microwave
- Dedicated laboratory space for NDE and configurable space for specific jobs

Most tools are field deployable

Gas Turbine Component Quality Characterization

Objectives and Scope

- Implement a simple component characterization process to augment quality assurance processes for gas turbine blades
 - Reduce probability of failure and maximize life cycle
- Conduct component inspections and enhance quality data analyses
- Develop a comprehensive data base of signatures for comparative analysis and trending
- Define process variables that may identify root causes of quality anomalies
- Track degradation and repair adequacy

Value

- Develop additional methods of screening parts to increase overall quality and assess repair methods
- Provide additional tools to assess the quality of new designs
- Increase life cycle without added risk
- Compare individual parts signature to an extensive data base

Non-destructive evaluation of gas turbine hot section blade

Details and Contact

 Cost and schedule dependent on number of parts to be evaluated

Project Manager: John Scheibel

jscheibe@epri.com, 650.855.2446

Supplemental Project: SPN 3002015408

Characterize blade signatures to enhance quality and reduce risk of failure

Together...Shaping the Future of Energy™

