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Context and Introduction

 Increasing tendency to use 

Condition Based Lifing

Approaches for Gas 

Turbines

 These use real operational 

data instead of bounding 

operation traditionally 

assumed

 Open the opportunity to 

extend or intelligently 

manage the lives of 

components
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Context and Introduction

Condition based methods raise challenges for 

analysis:

 Focus on predicting temperature and stress 

of critical locations on components at all 

operating conditions

 Removal of operation conservatism 

requires assessment of prediction 

uncertainty

 Multiple sensors, not all co-located with 

critical points
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Approach

 Consider generic turbine 

blade

 Model boundary conditions 

and assumptions as uncertain 

parameters
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Emulated Model

 Use Bayesian inference 

around a physical model to 

combine:

 Engineering understanding

 Data from sensors across 

component

 Produce uncertain 

predictions of temperature 

in critical locations

Temperature 

at Critical 

Location

Engineering 

Estimates of 

Boundary 

Conditions

Temperature at 

Measurement 

Locations
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Priors: Engineering Judgement

 Thermal models contain boundary 

conditions, which are informed by 

judgement or analysis

 Each of these is potentially uncertain

 Boundary condition parameters can be 

defined as distributions – priors

 Samples of the priors, fed through the 

emulator, give a distribution of temperature 

across the blade
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Priors: Example BC Calculation

 Example: Secondary cooling flow through an orifice / 

tube.

 Mass flow, pressure drop, fluid temperature, HTC 

calculated in 1D flow network solver.

 Uncertainty in:

 HTC correlation, geometry, entrance effects, “known” 

conditions, pressure loss correlation, mass flow rate, solid 

wall temperature, etc.

 Can systematically derive prior distribution through 

running flow solver for varying inputs. 
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Likelihoods: Data

 Measurements are taken to help narrow 

down the uncertainty in boundary 

conditions

 These can inform likelihood distributions of 

the boundary conditions

 “What boundary conditions are likely to 

lead to these measurement results?”
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Posteriors: Data and Judgement Combined

 Use Bayes’ Rule to combine priors and 

likelihoods into posteriors

 These combine data and judgement to yield 

lower uncertainty than either
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Posteriors: Data and Judgement Combined

 Use Bayes’ Rule to combine priors and 

likelihoods into posteriors

 These combine data and judgement to yield 

lower uncertainty than either

 Challenging to sample, use Markov Chain 

Monte Carlo
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Conclusion and Applications

15

 Bayesian approach allows judgement 

and data to be combined to reduce 

uncertainty

 Applications:

 Uncertainty quantification

 Model fitting / matching

 Digital asset diagnostics

 Learning from field experience

 Test and measurement 

specification

Judgement

Data

Combination


