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Context and Introduction

 Increasing tendency to use 

Condition Based Lifing

Approaches for Gas 

Turbines

 These use real operational 

data instead of bounding 

operation traditionally 

assumed

 Open the opportunity to 

extend or intelligently 

manage the lives of 

components
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Context and Introduction

Condition based methods raise challenges for 

analysis:

 Focus on predicting temperature and stress 

of critical locations on components at all 

operating conditions

 Removal of operation conservatism 

requires assessment of prediction 

uncertainty

 Multiple sensors, not all co-located with 

critical points
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Approach

 Consider generic turbine 

blade

 Model boundary conditions 

and assumptions as uncertain 

parameters
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Emulated Model

 Use Bayesian inference 

around a physical model to 

combine:

 Engineering understanding

 Data from sensors across 

component

 Produce uncertain 

predictions of temperature 

in critical locations

Temperature 

at Critical 

Location

Engineering 

Estimates of 

Boundary 

Conditions

Temperature at 

Measurement 

Locations
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Priors: Engineering Judgement

 Thermal models contain boundary 

conditions, which are informed by 

judgement or analysis

 Each of these is potentially uncertain

 Boundary condition parameters can be 

defined as distributions – priors

 Samples of the priors, fed through the 

emulator, give a distribution of temperature 

across the blade
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Priors: Example BC Calculation

 Example: Secondary cooling flow through an orifice / 

tube.

 Mass flow, pressure drop, fluid temperature, HTC 

calculated in 1D flow network solver.

 Uncertainty in:

 HTC correlation, geometry, entrance effects, “known” 

conditions, pressure loss correlation, mass flow rate, solid 

wall temperature, etc.

 Can systematically derive prior distribution through 

running flow solver for varying inputs. 
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Likelihoods: Data

 Measurements are taken to help narrow 

down the uncertainty in boundary 

conditions

 These can inform likelihood distributions of 

the boundary conditions

 “What boundary conditions are likely to 

lead to these measurement results?”
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Posteriors: Data and Judgement Combined

 Use Bayes’ Rule to combine priors and 

likelihoods into posteriors

 These combine data and judgement to yield 

lower uncertainty than either
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Posteriors: Data and Judgement Combined

 Use Bayes’ Rule to combine priors and 

likelihoods into posteriors

 These combine data and judgement to yield 

lower uncertainty than either

 Challenging to sample, use Markov Chain 

Monte Carlo
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Conclusion and Applications

15

 Bayesian approach allows judgement 

and data to be combined to reduce 

uncertainty

 Applications:

 Uncertainty quantification

 Model fitting / matching

 Digital asset diagnostics

 Learning from field experience

 Test and measurement 

specification

Judgement

Data

Combination


