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Condition based methods raise challenges for Critical Region
analysis: 1000
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Approach

» Consider generic turbine » Use Bayesian inference » Produce uncertain
blade around a physical model to predictions of temperature
N Mode| boundary Conditions Combine: In critical locations
and assumptions as uncertain » Engineering understanding
parameters » Data from sensors across
component
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: Sampled f iors, Standard Deviati
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» Example: Secondary cooling flow through an orifice /
tube.

» Mass flow, pressure drop, fluid temperature, HTC
calculated in 1D flow network solver.

» Uncertainty in:

» HTC correlation, geometry, entrance effects, “known”
conditions, pressure loss correlation, mass flow rate, solid
wall temperature, etc.

» Can systematically derive prior distribution through
running flow solver for varying inputs.
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» Measurements are taken to help narrow Mosaurements 1000
down the uncertainty in boundary
conditions 5 70
1 900
» These can inform likelihood distributions of S
. . ] A
the boundary conditions - v
» “What boundary conditions are likely to " 1800 §
lead to these measurement results?” - g
2 1 750
0.
0.5 700
\ A3 p s =
\\ — 9.5 650
-0.5 S 9
\\%{’-’-/’- 8.5
<1 8
9

© Frazer-Nash Consultancy Ltd. All rights reserved. SYSTEMS AND ENG'NEERING TECH NOLOGY



TR |ikelihoods: Data

CONSULTANCY

» Measurements are taken to help narrow
down the uncertainty in boundary
conditions

» These can inform likelihood distributions of
the boundary conditions

» “What boundary conditions are likely to
lead to these measurement results?”

» Sampling likelihoods leads to
measurement-based temperature
distributions
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Sampled from likelihoods, Standard Deviati
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Posteriors: Data and Judgement Combined

Sampled from posteriors, Standard Deviation

» Use Bayes’ Rule to combine priors and
likelihoods into posteriors 55
1.2°%
» These combine data and judgement to yield 14
lower uncertainty than either 68 5
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Posteriors: Data and Judgement Combined

Sampled from posteriors, Standard Deviation

» Use Bayes’ Rule to combine priors and
likelihoods into posteriors
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Posteriors: Data and Judgement Combined

3r 0.12
» Use Bayes’ Rule to combine priors and
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’ =01
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Conclusion and Applications

» Bayesian approach allows judgement
and data to be combined to reduce
uncertainty

» Applications:
» Uncertainty quantification
» Model fitting / matching
» Digital asset diagnostics
» Learning from field experience

» Test and measurement
specification
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