Gas Turbine Uncertainty Using Bayesian Statistics

David Munn, Henry Cathcart, Daniel Guymer, Richard Green

10th International Gas Turbine Conference, October 2021, Paper Number: 31-IGTC21

SYSTEMS AND ENGINEERING TECHNOLOGY

Context and Introduction

- Increasing tendency to use Condition Based Lifing Approaches for Gas Turbines
- These use real operational data instead of bounding operation traditionally assumed

 Open the opportunity to extend or intelligently manage the lives of components

Context and Introduction

Condition based methods raise challenges for analysis:

- Focus on predicting temperature and stress of critical locations on components at all operating conditions
- Removal of operation conservatism requires assessment of prediction uncertainty
- Multiple sensors, not all co-located with critical points

- Approach
- Consider generic turbine blade
- Model boundary conditions and assumptions as uncertain parameters
- Use Bayesian inference around a physical model to combine:
 - Engineering understanding
 - Data from sensors across component
- Produce uncertain predictions of temperature in critical locations

Priors: Engineering Judgement

- Thermal models contain boundary conditions, which are informed by judgement or analysis
- Each of these is potentially uncertain
 - Boundary condition parameters can be defined as distributions – priors
- Samples of the priors, fed through the emulator, give a distribution of temperature across the blade

Priors: Engineering Judgement

- Thermal models contain boundary conditions, which are informed by judgement or analysis
- Each of these is potentially uncertain
 - Boundary condition parameters can be defined as distributions – priors
- Samples of the priors, fed through the emulator, give a distribution of temperature across the blade

Priors: Engineering Judgement

- Thermal models contain boundary conditions, which are informed by judgement or analysis
- Each of these is potentially uncertain
 - Boundary condition parameters can be defined as distributions – priors
- Samples of the priors, fed through the emulator, give a distribution of temperature across the blade

Priors: Example BC Calculation

- Example: Secondary cooling flow through an orifice / tube.
- Mass flow, pressure drop, fluid temperature, HTC calculated in 1D flow network solver.
- Uncertainty in:
 - HTC correlation, geometry, entrance effects, "known" conditions, pressure loss correlation, mass flow rate, solid wall temperature, etc.
- Can systematically derive prior distribution through running flow solver for varying inputs.

8

Likelihoods: Data

- Measurements are taken to help narrow down the uncertainty in boundary conditions
- These can inform likelihood distributions of the boundary conditions
 - What boundary conditions are likely to lead to these measurement results?"

Likelihoods: Data

- Measurements are taken to help narrow down the uncertainty in boundary conditions
- These can inform likelihood distributions of the boundary conditions
 - "What boundary conditions are likely to lead to these measurement results?"
- Sampling likelihoods leads to measurement-based temperature distributions

Sampled from likelihoods, Standard Deviation 20 1.2 15 0.8 Temperature (K) 0.6 0.4 10 0.2 0 0.5 5 10 0 9.5 -0.5 q 8.5

10

Likelihoods: Data

- Measurements are taken to help narrow down the uncertainty in boundary conditions
- These can inform likelihood distributions of the boundary conditions
 - "What boundary conditions are likely to lead to these measurement results?"
- Sampling likelihoods leads to measurement-based temperature distributions

Sampled from likelihoods, Standard Deviation 20 1.2 15 0.8 Temperature (K) 0.6 10 0.09 Prior 0.08 Likelihood 0.07 0.06 5 10 0.04 9.5 0.03 a 0.02 8.5 0.01 800 850 900 950 Temperature (K)

11

Posteriors: Data and Judgement Combined

- Use Bayes' Rule to combine priors and likelihoods into posteriors
- These combine data and judgement to yield lower uncertainty than either

Posteriors: Data and Judgement Combined

- Use Bayes' Rule to combine priors and likelihoods into posteriors
- These combine data and judgement to yield lower uncertainty than either

Posteriors: Data and Judgement Combined

- Use Bayes' Rule to combine priors and likelihoods into posteriors
- These combine data and judgement to yield lower uncertainty than either
- Challenging to sample, use Markov Chain Monte Carlo

Conclusion and Applications

- Bayesian approach allows judgement and data to be combined to reduce uncertainty
- Applications:
 - Uncertainty quantification
 - Model fitting / matching
 - Digital asset diagnostics
 - Learning from field experience
 - Test and measurement specification

