The design and optimisation of a hydrogen combustor for a 100 kW micro gas turbine

Why a hydrogen gas turbine?

Compressor design

Turbine design

Focus on the combustor

Swozzle design gives too high NOx

Steady RANS

LES

LES gives finer flow contours, but overall results are the same:

NO_{x} at outlet = 1370 ppm

Combustor improvement – over to MICROMIX design

1. Improve the current single nozzle + swirler design with regards to:

.Outlet temperature homogeneity

 $\cdot NO_{\chi}$ emissions

2. Compare improved current design to a "MICROMIX"-type combustor geometry of our own design:

•Several smaller annular placed nozzles give a jet-stabilised flame

.Smaller flames \rightarrow Air spends less time at a high T \rightarrow thermal NO_X decreases

Timo Zornek, Thomas Mosbach et al. "Optical Measurements of a LCV-Combustor Operated in a Micro Gas Turbine With Various Fuel Compositions", ASME Turbo Expo 2018, GT2018-75481

Micromix gives much lower NO_x

Contours of NO_x mass fraction

Finding the optimal injection depth

Perpendicular hydrogen injection into air supply causes a very turbulent flow \rightarrow great mixing

Injection depth is critical:

- Too small: not enough mixing
- Too large: penetration into the inner recirculation zone → increases residence time → NOx/

Single nozzle test geometry: Cold flow CFD

To investigate the **impact of increasing hydrogen injection pressure** and try to find an **optimum w.r.t NO_x emissions**

GOAL: Find the provisional optimal ΔP between hydrogen inlet and air inlet

Mesh

Turbulence model: k- ω -SST

 \rightarrow in order to better model the flame recirculation zones

Turbulence chemistry interaction: Eddy dissipation concept (only for later hot flow simulations)

 \rightarrow in order to incorporate the multi-step chemical reaction mechanisms

Combustion model: Burke mechanism with Zeldovich thermal NOx modelling (only for later hot flow simulations)

→ Compared with DRM.19 and Li + is state-of-the-art hydrogen combustion mechanism used

Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., and Klippenstein, S.J. Comprehensive h2/o2 kinetic model for highpressure combustion. International Journal of Chemical Kinetics, 44(7):444–474, 2012. 34, 35

Ref.: A. Haj Ayed, K. Kusterer, H. H.W. Funke, J. Keinz, and D. Bohn. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities. Propulsion and Power Research, 6(1):15–24, 2017. vi, 4

Finding the optimal ΔP between H₂ and air

Using the Holdeman empirical relation

Using our simulations (cold flow)

Comparison of empirical and simulation results

Good agreement at lower hydrogen injection pressures Less agreement at higher pressures

→ Due to impact of wall (and opposing jet in the real combustor case) compared to the jet in free air in Holdeman case

Optimal H2 injection pressure range

- The lower limit
- → Because jet separates from lower surface
- Upper limit
- \rightarrow Because jet penetrates into upper vortex

Tentative optimum from cold flow simulations

New multi-nozzle combustor geometry

Six injection pairs per slice; "multi-nozzle pizza slice model"

Conclusions and future work

The design and optimisation of a hydrogen combustor for a 100 kW micro gas turbine

