Un-Buzz-Wording the Digital Twin: A Practical Guide and Examples for Power Plant Operators

Bobby Noble

Gas Turbine Programs Manager (P216/P217) *Electric Power Research Institute*

10th International Gas Turbine Conference October 14, 2021

Image: Second system
Image: Second system

Image: Second

Co-Author and Acknowledgement

Electric Power Research Institute:

- Lea Boche
- Turbine Logic:
 - Chris Perullo, Jamie Lim, & Tim Lieuwen

Contributors:

- Chevron Pipeline & Power:
 - Joe Milton & Rachel Whitacre
- Southern Company:
 - Josh Barron
- Duke Energy:
 - Chris Griffin
- Luminant:
 - Chris Jackson

Digital Twin Concept

- The Digital Twin serves as a virtual replica of an asset in real time
 - It is an *analytical model* that represents a *physical system*
- The term digital twin has been used as a broad label for many types of analytical analysis and other representations
- A true twin contains several characteristics:
 - It must contain the physics of the physical hardware or process you are emulating
 - It must have a method for matching a generic analytical model to the condition of the hardware on a regular basis
 - It must have the capability to predict (prognosticate)

How Can a Digital Twin Help?

www.epri.com

5

What Can You Do With It?

	Future	Performance	Prediction
--	--------	-------------	------------

Real-Time Diagnostics

Updated Correction Curves

www.epri.com

Pre/Post-Outage "What-If"

Case Studies

Fault Diagnostics

Future Performance Prediction

Water Wash Impacts

- Plot shows one year+ of compressor health parameters
 - Vertical lines show offline water washes
- Can clearly see sawtooth pattern from offline washes
- Used Digital Twin to Predict potential power recovery from wash

Performance Forecasting

- Constant recalculation of health parameters enables accurate forecasting
 - At right, light green is DT prediction
 - Dark colored points are site data

epri.com

 Can predict performance one week or more in advance

Prediction Accuracy

Prediction	One Day Ahead	One Week Ahead
Generator Watts (kW)	+/- 1,758	+/- 2,556
CDP (psig)	+/- 1.78	+/- 2.5
[bar]	[+/- 1.12]	[+/- 1.17]
CDT (deg F)	+/- 4.7	+/- 6.77
[deg C]	[+/- 2.6]	[+/- 3.39]
TTRF (deg F)	+/- 15.94	+/- 23.5
[deg C]	[+/- 8.86]	[+/- 13.1]
EGT (deg F)	+/- 9.4	+/- 14
[deg C]	[+/- 5.2]	[+/- 7.8]
Fuel Flow (lbm/s)	+/- 0.158	+/-0.23
[kg/s]	[+/- 0.072]	[+/- 0.104]

Errors shown for F-Class Turbine

Summary on Digital Twin for Gas Turbines

- Using an embedded Neural Network system to autocalibrate and assist with fault generation for performance characteristics of the gas turbine
- Direction to expand capabilities including mechanical and emission diagnosis
- <u>Creates</u> improved *diagnostic* and *prognostic* capabilities
- <u>Complements and Enhances</u> existing *health* and *performance monitoring* [e.g., APR]
- The Future: Fully integrating with AI/ML technologies to enhance monitoring leading to the possibility of synthetic faults **not previously observed**

- Digital Twin virtual representation of a **specific** piece of equipment or system created through a combination of:
 - Data
 - Knowledge
 - Analytics
 - Physics Based Models

Prediction of turbomachinery state and performance including uncertainty

© 2021 Electric Power Research Institute, Inc. All rights reserved

Together...Shaping the Future of Energy™

