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The aim of this work is to propose a purely data-driven
approach to maintenance.

This need arises for two main reasons:

e The preventive maintenance intervals set by OEMs
sometimes prove to be inaccurate, leading to considerable
increases in maintenance costs.

* The physical modelling proposed in many works, even if it can
provide accurate answers, is very complex and specific and
often requires costly analysis and plant downtime.
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When a gas turbine system is put into operation, an expected
"natural” degradation is attributed to it. On the basis of the
operating history, the initially expected value is updated.

It is clear that if a failure occurs, the useful life of the system
undergoes a faster reduction than the "natural" expected.

It is therefore necessary to
identify a failure as soon as
possible in order to take
mitigation actions  as
efficiently as possible

System State Variable Y

time

Figure 1: Fault mitigation approach [1]
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e Study of the main damage mechanisms, maintenance
policies and the state of the art.

Definition of
the
methodology

e Data-driven methodology that provides
alternative solutions.

e Application of
methodology on a
dataset.

Testing &

validation
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The main damage mechanisms involved in gas turbine systems
are:




State of art dlh i R

The most widely used approach by the OEMs to define the life reduction of a
component is to establish equivalent operating hours (EOH).
The most general formula to calculate the EOH is as follow [2]:

n

EOH =a; *ny +a, *n, +2ti+f*w*(b1*t1+b2*t2)
i=1
a, and n4 are the coefficient and number of starts, respectively.
a, and n, are the coefficient and number of emergency starts, respectively.
b, and t; are coefficient and operating time in basic load, respectively.
b, and t, are coefficient and operating time of the peak load, respectively.

GE bases gas turbine maintenance requirements on independent counts of
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Impact of operating history

The following table makes a distinction between the most
common faults in systems that perform continuous operations
and systems that perform cyclical operations.
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Continuous Duty

Cyclic Duty

Creep
Oxidation

Corrosion
Erosion
FOD
Rupture
Rubbing/Wear
High-Cycle Fatigue
Combined failure mechanism (creep/fatigue,
corrosion/fatigue, oxidation/erosion and so on)

Combined failure mechanism (creep/fatigue,
corrosion/fatigue, oxidation/erosion and so on)

Thermal-Mechanical Fatigue
High-Cycle Fatigue
Rubbing/Wear
FOD

Table II: Typical failure modes for hot gas components inside a gas turbine [3]
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Literatu're ¢ Study of the main damage mechanisms, maintenance
analysis policies and the state of the art.

e Data-driven methodology that provides
alternative solutions.

e Application of
methodology on a
dataset.

Testing &

validation
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Data collection

A 4

Sensor selection
(Permutation Entropy)

H(D) = —Yp(m) * log,p(m)

A\ 4

Data fusion
(Multi-objective optimization)
Obj = min{PE (D), 6%}

Remaining useful life estimation
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Permutation Entropy i.n

PE is a measure of complexity of a dynamic system based on
comparison of neighbouring values [9].

Probability of each permutation:

#{t|0 <t <T —n,(xr4q, ., Xt45) has type m}
T—n+1

p(m) =

Permutation Entropy calculation:

H(n) = =Yp(m) * log,p(m)

\ ¢

Divide all by log,n! to normalise » 0<H(n) <log,n!
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To give an idea of how PE is calculated [10], an example of

calculation on the following vector x is provided:
+1

A :

L_L_____,: 10i6 11 3] Embedding time delay 17 =1

! ]
3 —
1
L
3 ]

Embedding dimension n=3

All columns have 3 elements
(since n = 3) and all the column
vectors are one step ahead of the
previous one (since T = 1)
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The next step is to calculate 3! = 6 permutations and collect
them into vectors.

m =101 2] 417 9 10 9
m,=[0 2 1] 719 10 6 11]
A= P 19110 6 11 3
m,=[1 2 0] . I ‘

1010 111
ms=[2 0 1] ,1:1202‘
me=1[2 1 0] 212020

m,=[0 1 2]because4<7<9
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Permutation Occurrences Relative Frequency
(pi)
Ty 2/5

Tt 0/5
3 1/5
Ty 2/5
Tts 0/5
g 0/5
n!
PE = —Zpi * log, p; = 1,522
=1

Withn=2 PE = 0,918

q
~ SEeDF 13




Data Fusion d joorimenos
N

The sensors selected based on the sensor selection algorithms
can be used in data fusion, which offers the following
advantages:

e |t allows to obtain a health indicator with more evident
trends.

* |t allows us to observe multiple sensors simultaneously.

* By calculating the weights on a limited number of the latest
observations, it is possible to update it continuously.
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Fused indicator calculation d!,

The objective of data fusion is to calculate a vector of weights
which when multiplied by the matrix containing the chosen
sensors allows us to obtain a fused indicator.

, J0129A SIY3I9MN\ ‘
\ J
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l l

mXxn mx1

The vector of weights is calculated from the matrix of selected
sensors with the aim of minimizing objective functions.
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Multi-objective optimization problem d_,mr_,.
The objective functions to be minimized in this specific case are
two: variance and permutation entropy [11].

Obj = min,,{PE(D), 6*}

The variance is calculated according to the following formula:

(ot (v Lt

M-1

Where Y is the matrix of selected sensors, but it only contains a
limited number of the latest observations. M is the number of

units. \

This allows the algorithm to update itself and follow
new trends in the data [1].
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The following formula describes what the RUL is and how it is
calculated:

RUL = Tryr — Tgom

where Tgoy (end of measurements time) is the time
corresponding to the end of the available measurements and
Tryr (threshold time) is when the predicted degradation curve
meets the threshold.

The method used to calculate RUL depends on the kind of data
available.
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In most cases the only data available are on prescribed
threshold values. With this kind of information, it is possible to
fit time series models to condition indicators extracted from
sensor data, which rise or fall over time. These degradation
models estimate RUL by predicting when the condition indicator
will cross the threshold.

Degradation based RUL Estimate ~ 9.5 days
| RUL: ;9.5 days

Failure Threshold : .
._) Fitted model

Condition Ihdcator Value

Predlctlon

...................... E.-....-.-E.----.....-.---...............) Measurements
4 .
4-,'. = o0 e0

Life Time Variable (days) T.‘:'() M TT”R

Measured Data
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Literatu're ¢ Study of the main damage mechanisms, maintenance
analysis policies and the state of the art.

Definition of
the
methodology

e Data-driven methodology that provides
alternative solutions.

| . Application of
methodology on a
dataset.
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Measurements of 21 sensors from an aircraft engine are taken
from the NASA database [12].

These data were generated with a simulation tool and are
available online. Each data set is comprised of a time series of

flight cycle measurement “snapshots” at cruise conditions [13].

Data from the first fleet (divided into 21 sensors) were used for

this ana |ys IS. Fan | compressor tubme

ngh pressure
shaft

Low-pressure
shaft

Low-pressure Combustion Low-pressure Nozzle
compressor chamber turbine
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Sensors #1, #5, #6, #10, #16, #18 and #19 show a zero PE value
justified by the fact that these sensors have a constant trend.

Sensor 1 Measurements

Temperature at fan inlet [°R]

517.56
o
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# Cycles

PE NASA turbofan senso

Demanded core fan speed [rpm]

Burner fuel-air ratio [/]

Sensor 16 Measurements
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Sensor 19 Measurements
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PE - Selected sensors dln e horta Industriale

Sensors #3, #8, #9 and #17 show the lowest PE values.

Therefore, they potentially represent the measurements of
highest interest in a degradation analysis.

Sensor 17 Measurements

Sensor 3 Measurements 98
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Fused indicator calculation
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As the curve representing the RUL approaches its threshold
value, the probability of failure increases. The choice to carry out
a maintenance action must therefore follow two decision logics:
the probability of failure and the costs.

’ .
Costs of failure
after
G maintenance

Maintenance

actions
Cost of

maintenance
Decision
Problem

"Cost of failure
without
maintenance

No
Maintenance

actions
No costs
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Not carrying out maintenance leads to lower maintenance costs
but exposes to higher risks (and thus failure costs) that increase
with operating hours. Conversely, investing a certain amount of
capital for a maintenance action entails a cost that generates a
lower risk.

100 T T T T T T T T T
—— No-Maintenance costs
90 - Maintenance costs b

80 .

Costs
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In this study, the possibility of carrying out a degradation
assessment of gas turbine systems through a data-driven statistical
approach was evaluated. The following results are observed:

e The sensor selection activity based only on PE led to the
selection of the most significant sensors.

 Multi-objective optimization achieved satisfactory levels of PE
and variance.

 The fused indicator proved capable of predicting RUL effectively.

The absence of specific material analysis and geometric modelling
(which also requires plant shutdowns) ensures minimal
implementation costs compared to other approaches.
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Thanks for your attention
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