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ABSTRACT 

Growing demand for flexibility and high maintenance 

costs make gas turbine systems increasingly expensive. 

Reliability and availability are both key factors and have a 

direct impact on the economics of these systems. The 

plants operators require fast and reliable methods to assess 

the remaining lifetime of the gas turbine components. 

Nowadays, inspection and replacement intervals for gas 

turbine components are typically determined by model-

based assessment of equivalent operating hours (EOH). 

However, this method requires a lengthy and expensive 

process, which needs to be repeated in case of components 

upgrades.  

The innovative method proposed in this work collects 

a considerable number of operational data on different 

types of machines (ranging from small engines to heavy 

duty), through which it is possible to build a curve 

representing the probability of failure. The curve can be 

updated at each inspection by assessing the presence of 

damage mechanisms from time to time (implementing 

data-driven procedures for monitoring, diagnosis, and 

advanced prognosis). The result will be an updated risk 

curve that provides operators with information about the 

health status of the components and the potential risk 

associated to late replacement.  

Integrating the model developed with the costs 

associated to maintenance, a comparative cost analysis is 

carried out to support the decision-making process and 

evaluate the possible benefits. It is clear that a risk-based 

approach (based on statistical data analysis) is easier to 

use, less costly than a modelling approach and can result in 

significant economic benefits. 
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1. INTRODUCTION 

Due to the increasing demand for the integration of 

renewable energies, thermal power plants are required to 

be more and more flexible to fill the gaps left by 

intermittent green energy sources. However, traditional 

energy sources were originally designed for constant load 

operation, and the sudden changes in load demanded by 

the energy market produce thermal and mechanical 

stresses that cause much greater degradation than 

originally expected. 

At present time, the useful life of components is generally 

estimated by OEMs (Original Equipment Manufacturers) 

through the calculation of equivalent operating hours 

(EOH). This methodology gives the equipment an initial 

useful life which is "consumed" at a rate dependent on the 

operations done by the equipment (e.g., starts/stops, hours 

in full load, hours in partial load, trips, etc.). Examples of 

how various OEMs calculate EOH are provided by 

Aminov and Kozhevnikov (2013) [1]. In their work they 

explain how EOHs are counted by considering different 

OEMs using different calculation models. These 

calculations proved to be quite efficient for systems 

operating mainly at full load. In the last 20 years, however, 

increased demand for flexibility has introduced cyclic 

operation. For this reason, the accuracy of the EOH 

calculation has decreased and some degradations are 

occurring before planned outages based on the EOH 

models. 

To obtain more accurate estimates, various methods of 

estimating RUL (Remaining Useful Life) have been 
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proposed over the years: FEM stress analysis, data-based 

models, and hybrid physical-statistical models. Great 

results have been achieved by Scheibel et al. (2014) [2] 

who, through geometric NDE analyses combined with the 

knowledge of material properties and operating conditions, 

have built ANSYS finite element models of some 

components to obtain good estimates of the health 

condition and remaining useful life. A problem related to 

this type of approach may be the complexity of modelling 

the components and especially the uselessness of the 

models in case of plant upgrades as they are very specific. 

Kundu et al. (2015) [3] proposed an approach instead 

based on failure risk estimation. This estimation is initially 

based on a General Log Linear Lognormal model. Then, 

through a Bayesian approach, the parameters of the initial 

model are updated based on inspection data (e.g., crack 

length) providing updated and more accurate estimates 

than the initial ones. Since this estimate is based on the 

inspection results, criticalities may arise in the 

intermediate times of the inspections that cannot be 

quickly considered by the risk calculation algorithm (there 

is therefore a discrete risk update and not a continuous 

one).  

This paper evaluates the benefits of a purely data-

driven approach to this topic by continuously monitoring 

information from sensors to provide estimates of RUL.  

In this way, additional information on the health of the 

system can be obtained without the need to build complex 

models (which in some cases may require plant downtime) 

on a continuously and non-discretely updated basis and, 

with this information, mitigation actions can be taken as 

efficiently as possible. 

 

2. GAS TURBINE DEGRADATION ANALYSIS 

Gas turbine systems are subject to different types of 

degradation depending on different mechanisms. By 

studying the specific mechanisms, however, it is possible 

to try to establish a link between the damage mechanism 

and observable variations in the sensors available to the 

systems under investigation.  

 

2.1 GAS TURBINE KEY DAMAGES 

Understanding the below phenomena is the starting point 

and lays the foundations for subsequent analyses. The 

main failure mechanisms are the following: Wearing, 

Foreign Object Damage (FOD), Creep, Fouling, 

Corrosion, Erosion, Fatigue. Depending on the 

components belonging to these systems, the failures 

mechanisms vary as the operating conditions change. 

About that, a general overview is provided by Hua-dong 

Yang and Xu Hong (2011) [4] summarized in Table 1. 

Foreign Object Damage (FOD): Gas turbine systems suck 

in large quantities of air. Together with the air, other 

elements that cause damage, especially in the early stages 

of compression, can also be sucked in. This problem 

mainly concerns air transport applications. The elements 

that are sucked in can be of various kinds: metal objects, 

birds, bolts, seals, sand, ice, etc. The resulting damage 

therefore depends on the nature and the dimension of the 

ingested element. For stationary applications, the filtration 

system generally protects against FOD, but there may be 

DOD (Domestic Objects Damage) which corresponds to 

material liberation in the stream (generally a piece of blade 

or vane). 

Creep: The Creep mechanism is the tendency of a material 

to deform when subjected to prolonged thermal and 

mechanical stress. For this reason, creep, for turbine 

blades, is very often the life-limiting process because 

blades tend to stretch during operation. This elongation can 

result either in cracking on the blade, or in the blade tip rub 

on the non-rotating shroud. 

Fouling: The fouling mechanism is caused by the adhesion 

of substances and particles on the surface of the 

compressor and turbine components. This causes a change 

in geometry and an increase in surface roughness. This 

results in worse aerodynamic properties and a reduction in 

mass flow and components efficiency, which leads to not 

inconsiderable power output reductions. 

Corrosion: Corrosion is a degradation mechanism 

generated by the ingestion of pollutants by the system. 

Corrosion during operation generally does not affect the 

compressor as it works in dry conditions even if Cold 

Corrosion phenomena cannot be excluded, especially for 

units operated in coastal areas and with non-coated 

compressor blades and vanes. However, when the system 

is switched off, humidity can settle (condensing) and react 

with pollutants (e.g., hydrochloric acid and sulphur 

trioxide) creating corrosive substances. On the turbine, on 

the other hand, acts the hot corrosion mechanism. Hot 

Corrosion is a form of accelerated oxidation that is 

produced by the reaction between the component and the 

material deposited on it. The aggressiveness of this 

mechanism is dependent on the temperature. 

Erosion: The air entering gas turbine systems, even if there 

are filters, carries a significant number of solid particles 

that may consist of ash, sand, dust, iron oxides, etc. These 

particles colliding at high speeds against the surfaces of the 

components, remove part of the material and cause 

significant damage. This damage is manifested by pitting 

and cutting of the blade leading and trailing edges and an 

increase in the blade surface roughness. 

Fatigue: This mechanism can begin when a component is 

cyclically loaded. This mechanism is divided into two 

types according to the deformation induced in the material: 

Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF). 

LCF occurs when a series of plastic deformations are 

induced in the material while HCF occurs when the 

material undergoes elastic deformations.  Hence the name, 

because in the case of LCF the number of cycles to failure 

is lower while for HCF it needs a higher number to reach 

the failure.  

The temperature differentials developed during turbine 

start-up and shutdown produces thermal stress. The cycling 

of these thermal stresses is thermal fatigue. 
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Component Element 
Failure 

modes 
Loading source 

Compressor 

Rotor 

Blades 

Fatigue, 

Erosion, 

FOD, 

Fouling, 

Rubbing 

Vibration, 

Particles 

Rotor 

(disk) 

Fatigue, 

Creep 

Centrifugal, 

Thermal 

Combustion Liner 

Fatigue, 

Creep, 

Oxidation 

Temperature 

Gradients 

Casing Fatigue Pressure Cycles 

Turbine 

Rotor 

Blades 

Creep, 

Fatigue, 

Rubbing 

Centrifugal, 

Vibrations 

Corrosion, 

Erosion, 

Fouling, 

Oxidation 

Exhaust 

products, 

Thermal 

Environments 

Rotor 

(disk) 

Creep, 

Fatigue, 

Oxidation 

Centrifugal, 

Thermal 

Stators 

Corrosion, 

Erosion, 

Fatigue, 

Creep, 

Oxidation 

Exhaust 

products, 

Thermal 

Environments, 

Pressure 

Table 1: Failures modes of a gas turbine 

 

2.2 IMPACT OF OPERATING HISTORY 

Operating regimes play a decisive role in the generation of 

faults. Depending on the operating history of the loads 

there may be one fault instead of another. Table I makes a 

distinction between the most common faults in systems 

that perform continuous operations and systems that 

perform cyclical operations. As can be seen from the Table 

2 elements highlighted in bold, for peaking machines, 

thermal-mechanical fatigue is the main life limiting failure 

mode. For continuous duty machines, creep, oxidation, and 

corrosion are the main life limiters. 

 An example of the influence of operating regimes on 

component degradation is reported in the work of D. 

Bosak et al. (2016) [6] within which the effects of a power 

adjustment made through variation of the Variable Inlet 

Guide Vane (VIGV) angle and through a variation in fuel 

quantities are analysed. The former leads to more gradual 

adjustments which induce lower thermal stresses than the 

latter, which results in rapid adjustment and high thermal 

stresses. From this it can be understood that introducing 

abrupt load adjustment operations increases component 

degradation by the same amount as the number and size of 

these operations. 

 

3. CORRELATION BETWEEN DATA AND 

FAILURE 

In the literature there is a vast amount of case studies that 

create a link between the occurrence of a failure and 

information from sensors. This correlation is very evident 

in some cases while it is more difficult to determine in 

others.  

 

3.1 PERFORMANCE INDICATORS 

Using the information from the sensors, several indicators 

are described in the literature, which are used to obtain 

more information on the health and operating efficiency of 

gas turbine engines. Among the indicators that provide 

general information on the health of the system are Power 

Output, Thermal Efficiency, Heat Rate and Exhaust Gas 

Temperature (EGT).  The latter is very often used in 

performance monitoring. An increase in EGT often results 

in performance degradation as well as damage and/or 

reduced life of parts of the system. EGT is often used as 

the difference between its threshold value and its peak 

values, which are usually reached during the start-up phase 

(EGT Margin) [7]: 

 

𝐸𝐺𝑇𝑀𝑎𝑟𝑔𝑖𝑛 = 𝐸𝐺𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐸𝐺𝑇𝑝𝑒𝑎𝑘𝑠          (1) 

 

However, for constant load applications, this indicator is 

more difficult to apply as the gas turbine is not operated 

under the conditions to generate the peak EGT (necessary 

for the calculation of EGT Margin). Furthermore, when the 

turbine is operated under varying load and environmental 

conditions, EGT values can vary independently from 

performance degradation. It is also for this reason that H. 

Hanachi et al. (2014) [8] introduced the Excess Heat Ratio 

Continuous Duty Cyclic Duty 

Creep 

Oxidation 

Corrosion 

Erosion 

FOD 

Rupture 

Rubbing/Wear 

High-Cycle Fatigue 

Combined failure mechanism (creep/fatigue, 

corrosion/fatigue, oxidation/erosion and so on) 

Thermal-Mechanical Fatigue 

High-Cycle Fatigue 

Rubbing/Wear 

FOD 

Combined failure mechanism (creep/fatigue, 

corrosion/fatigue, oxidation/erosion and so on) 

Table 2: Typical failure modes for hot gas components inside a gas turbine 
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(EH) as a performance indicator that is more suitable to 

provide estimates of system health under varying operating 

conditions: 

 

𝐸𝐻 =
𝐻𝑇−𝐻𝑇𝑀

𝑃𝐷
= 𝑚 𝑐𝑝

𝐸𝐺𝑇−𝐸𝐺𝑇𝑀

𝑃𝑑
                  (2) 

 

Where 𝐻𝑇 and 𝐻𝑇𝑀
 are the measured and modelled 

turbine outlet enthalpy flow, respectively. 𝑃𝐷 is the power 

design point, 𝑐𝑝 is the specific heat capacity of the exhaust 

gas and 𝑚 is the mass flow. 

 

3.2 DEGRADATION INDICATORS 

Some of the most used performance indicators were 

described in the previous section. In the monitoring of a 

gas turbine system, however, measurements are also 

carried out with the exclusive objective of monitoring the 

presence of damage to the components. For this purpose, 

vibrations, acoustic emissions, oil conditions, etc. are 

monitored. 

An interesting report by S. Chatterton et al. (2019) [9] 

investigates the link between the presence of a transverse 

annular crack on the rotor and vibratory trends. This work 

describes the presence of abnormal harmonic components 

in the frequency spectrum of shaft vibrations. This 

vibration behaviour is influenced by crack depth and crack 

shape. The importance of oil monitoring is emphasised by 

Shell [10]. For example, the presence of copper, iron and 

lead in the oil can indicate the degradation of one or more 

components of the gas turbine engine. 

 

3.3 FAULT IDENTIFICATION 

The identification of a specific failure from the analysis of 

sensor information requires the availability of information 

about the plant, its operating history, and a large sampling 

of data. Some examples are available in the literature. 

The work of Y.S.H. Najjar et al. (2020) [11] correlates the 

phenomena of compressor fouling, compressor erosion, 

compressor corrosion, turbine fouling and turbine 

corrosion with exhaust mass flow rate reduction and 

exhaust flow temperature increase. In addition, this work 

shows very clear degradation trends in compressor and 

turbine polytropic efficiency, in GT efficiency at partial 

and full load and in GT power output at partial and full 

load. In addition, Nurlan Batayev (2019) [12] defined an 

algorithm to evaluate the degradation due to fouling and 

defined a methodology that based on measurements of 

inlet and outlet pressure, inlet and outlet temperature, mass 

flow, fuel flow, exhaust gas temperature and compressor 

discharge pressure evaluates the need for compressor 

washing. Another interesting insight is provided by S. 

Chatterton et al. (2019) [9], already mentioned before, who 

point out a correlation between the opening and closing of 

cracks, caused by gravity during a complete rotor 

revolution, and vibratory phenomena (particularly for 

cracks on the shaft).  

Very often, therefore, in the presence of damage to one of 

the components of gas turbine systems, there is the 

presence of one or more indicators that can provide 

information. Sometimes, however, it can happen that the 

symptoms are too general to trace back to a specific fault 

based on the observation of a trend in the data coming 

from the plant. In fact, if variations in EGT, Power Output 

or even efficiency are observed, it is quite difficult to  

pinpoint the failure to a specific component. In this case, 

additional analysis and observations are required. 

 

A method that can be used in the Fault Identification phase 

is the use of the Signature Matrix. By analysing all the 

information coming from the sensors it is evaluated which 

measurements are in a faulty state (defined as symptoms) 

and collected within a vector. Specific vectors (called 

symptom vectors) are associated with specific faults [13]. 

 

 

 STATE OF HEALTH 

𝑆1 𝑆2 𝑆3 … 𝑆𝑁 

Fault 1 0 1 1 … 1 

… … … … … … 

Fault n 1 0 1  1 

Table 3: Fault signature matrix 

 

 

4. RUL AND MITIGATION ACTIONS 

The next steps following the identification of specific 

faults concern the choice of the best fault mitigation 

action. To do this, however, it is necessary to establish how 

much time is available to carry out the mitigation, so an 

intermediate step is necessary: the calculation of the RUL. 

 

4.1 RUL 

Once a specific fault has been identified, based on the 

information available in the literature, using regression 

techniques and, if necessary, data-fusion procedures [14], it 

is possible to estimate the RUL for that specific fault. 

However, these RUL estimates, based on on-line 

monitoring, are constantly updated. In fact, taking as input 

only a certain number of last observations, the calculated 

RUL value is continuously updated. 

In the toy-example shown in Figure 1 varying the length 

of the data set taken as input for the regression analysis 

results in different RUL values. Therefore, the prediction 

based on the latest data is more effective as data that are 

too far away are often not representative of the current 

state of the system and negatively affect the prediction. 

Data fusion techniques, on the other hand, are used to 

provide an overview of the system. In fact, by constructing 

a fused health indicator, it is possible to observe the 

performance of several sensors at the same time and have 

an estimate of the overall RUL of the system. 
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Figure 1. Prediction of the RUL with different input data 

lengths 

 

4.2 MITIGATION ACTIONS 

The choice of the most appropriate mitigation action is 

based on the estimated RUL times. In fact, four different 

scenarios can be configured in relation to the type of fault 

and the time available for fault mitigation as shown in 

Figure 2. 

 

 

 
Figure 2. Fault mitigation approach 

 

Fault Recovery allows the system to be restored to its 

initial conditions.. If this is not possible, Fault 

Stabilisation can be implemented, modifying the operating 

parameters, and limiting the failure. If it is not possible to 

stabilize the fault, Take-Home Operating Conditions are 

used to obtain time to prepare for maintenance. Finally, in 

the most critical cases, a system Shutdown is performed to 

avoid catastrophic events and excessive costs [13]. 

 

5. COST AND RISK ANALYSIS 

As the curve representing the RUL approaches its 

threshold value, the probability of failure increases. In fact, 

the prediction is often associated with a probability 

distribution based on the distribution of the data from 

which the regression was obtained. The choice to carry out 

a maintenance action must therefore follow two decision 

logics: the probability of failure and the costs. The decision 

tree shown in Figure 3 represents the decision process to 

be followed to consider costs the risks related to a 

maintenance action. 

 

 
Figure 3. Maintenance decision tree 

 

This analysis considers the probability of failure both if the 

maintenance action is carried out and if it is not carried 

out. Multiplying the probability of a certain event by the 

cost associated to that specific event, it is possible to 

obtain a cost indicator useful to support the decision-

making process. In fact, it is recommendable to make the 

choices that present the lowest risks. 

Not carrying out maintenance leads to lower maintenance 

costs but exposes to higher risks (and thus failure costs) 

that increase with operating hours. Conversely, investing a 

certain amount of capital for a maintenance action entails a 

cost that generates a lower risk. By comparing the two 

scenarios, it is possible to define a point at which it is more 

convenient to carry out maintenance, defining in this way 

the precise timing of intervention as shown in Figure 4. 

 

 
Figure 4. Comparison of the costs of the different 

scenarios (toy example) 

 

 

 

 

 

Decision Problem

Maintenance 
actions

Costs of failure 
after 

maintenance

Cost of 
maintenance

No Maintenance 
actions

Cost of failure 
without 

maintenance

No costs

Higher risk 
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6. CASE STUDY 

The data used in this case study are available from NASA 

[15]. The data were generated from a simulation using C-

MAPSS. The data refer to 21 sensors of 100 units and are 

divided into "train" data and "test" data. The former collect 

measurements until failure while the latter stop at a 

number of cycles before failure.  

In applying this method, train data were used up to 20 

cycles before failure and then the ability to predict RUL 

was assessed. 

 

6.1 SENSOR SELECTION 

Permutation Entropy (PE) has been treated extensively by 

C. Brandt and B. Pompe (2002) [16]. This parameter 

provides a measure of the complexity of data sets by 

comparing them with a matrix of permutations. Due to its 

nature, this parameter can be used to assess the presence of 

trends within data sets. Considering a generic time series 

{𝑥𝑡}𝑡=1,…,𝑇 all permutations π of order n will be evaluated. 

The relative frequency for each type of permutation is 

calculated as: 

 

 

𝑝(𝜋) =
#{𝑡|0≤𝑡≤𝑇−𝑛,(𝑥𝑡+1,…,𝑥𝑡+𝑛) ℎ𝑎𝑠 𝑡𝑦𝑝𝑒 𝜋}

𝑇−𝑛+1
               (3) 

 

 

The PE of order n≥2 is then calculated using the following 

formula: 

 

 

𝐻(𝑛) = −∑𝑝(𝜋) ∗ 𝑙𝑜𝑔2𝑝(𝜋)                                          (4) 

 

From 192 data available on unit 1, the last 92 

measurements were considered. Calculating the 

permutation entropy on the first 73 data the following 

results are obtained (Fig.5): 

 

 
Fig.5. PE of the 21 sensors 

 

Sensors #1, #5, #6, #10, #16, #18 and #19 were 

immediately eliminated from the study as they had a PE of 

zero. This is due to the fact that these sensors have 

constant trends and are therefore of limited use for 

degradation analysis. The sensors with the lowest non-zero 

values were #3, #8, #9 and #17. Due to their higher 

information content they were selected for the data-fusion 

technique. 

 

6.2 DATA FUSION 

The data fusion technique consists of constructing a new 

degradation indicator from a matrix containing some initial 

indicators and multiplying them by a vector of weights. 

 

[
 
 
 
 
𝑥1,1 .  .  .  𝑥1,𝑛

.   .             .

.        .        .

.             .   .
𝑥𝑡,1 .  .  .  𝑥𝑡,𝑛 ]

 
 
 
 

*

[
 
 
 
 
𝑤1

.

.

.
𝑤𝑛]

 
 
 
 

 =

[
 
 
 
 
𝑣1

.

.

.
𝑣𝑡]

 
 
 
 

                                            (5) 

 

The objectives of this optimization were to minimize the 

variance and PE (4) in order to find a vector of weights 

that, when multiplied by the matrix of measurements, 

results in a vector (fused indicator) that has a more 

monotonic trend than the initial sensors and therefore 

allows a better prediction to be made [14]. 

At the end of the optimisation, the weights corresponding 

to the lowest PE were selected. 

 

6.3 RUL CALCULATION 

Once the weights have been obtained the fused indicator is 

calculated as in equation (5). A grade 2 regression was 

applied to this indicator for trend extrapolation purposes. 

The threshold line was also calculated in a similar way to 

equation (5). Having in fact the data corresponding to the 

moment in which the failure occurs, it was possible to 

derive the threshold value as a multiplication of the data of 

the sensors selected at the time of the failure and the vector 

of weights. The result is shown in Fig. 6. 

 

 
Fig.6. RUL estimation 
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A RUL of 19 cycles is obtained, perfectly compatible with 

the real RUL generated by the simulation system (failure 

occurs at 92, just as calculated by the regression). 

The use of a limited number of last observations ensures 

that the provided estimate is continuously updated. By 

observing only the latest measurements, the sensor 

selection algorithm changes the selected sensors based on 

the latest observed trends. 

 

6.4 COST AND RISK ANALYSIS 

The analysis of costs and risks is closely dependent on the 

specific failure affecting the system. In the case study 

used, an RUL was calculated with a fused indicator that 

provides a general view of the system and not a specific 

one. In order to arrive at a more specific risk analysis, it is 

sufficient to evaluate which sensors have been selected by 

the sensor selection algorithm that will be the main 

responsible for the estimate generated by the fused 

indicator. 

 

7. CONCLUSIONS 

In this study, the possibility of carrying out a degradation 

assessment of gas turbine systems through a data-driven 

statistical approach was evaluated. The results obtainable 

from this procedure have the potential to offer crucial 

supporting information in the decision-making process 

regarding maintenance. The absence of specific material 

analysis and geometric modelling (which also requires 

plant shutdowns) ensures minimal implementation costs 

compared to other approaches.  This method therefore 

aims at choosing optimal maintenance times which are 

given by the optimum between the probability of failure 

and the costs associated with such an event.  
Continuing in this direction, advanced data-driven 

techniques are under development to obtain more precise 

estimates of RUL through in-depth analysis of sensor data. 
In addition, if several measurements are available for each 

sensor, it is also possible to add Trendability, 

Prognosability and Monotonicity analyses to assess the 

repeatability of trends, the dispersion of values at failures 

and quantify the monotonic trend.  The goal is to provide a 

tool that gives reliable on-line indications of the state of 

health of the system in addition to the result of inspections 

and the judgement of plant experts, enabling users to make 

more accurate maintenance choices. 
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