ETN Webinar Series

February 2021

Technology Innovation in sCO₂ power cycles

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764690

Presenter: Fulvio Bellobuono

About myself

Ernani Fulvio Bellobuono Senior Aerodynamics Engineer TPS – Baker Hughes Via F. Matteucci 2, Florence (Italy) ernani.bellobuono@bakerhughes.com

Background

PhD in Aerospace Engineering @ University of Naples

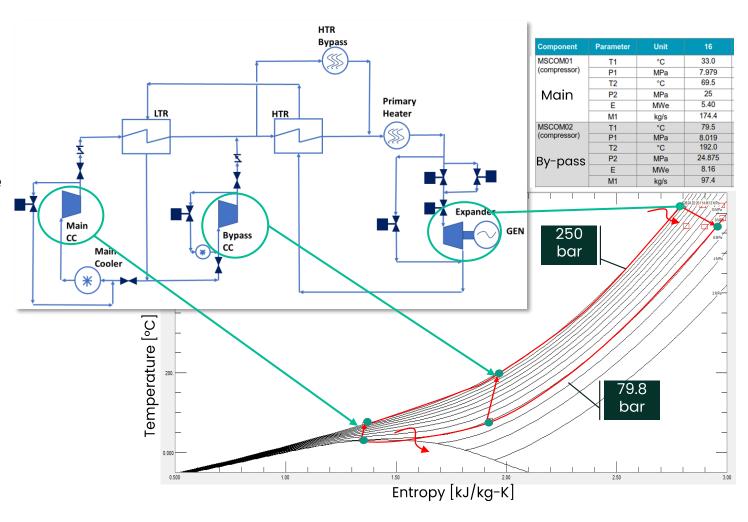
Senior Aerodynamics Engineer

Lead Aero Engineer for CC & GT

sCO₂ Programs in Baker Hughes, timeline

L	2018	2019	2020	2021	2022	2023	2024	2025
STEP	Jun'18		JUL'20					
Jan' sCO2 FLEX	18		Dec	7 20				
sCO2-4-NPP		Sep'19			Sep'22			
sCO2SOLAR			Jul'20				Jul'24	
Scarabeus		Q2′19			Q2′22			
# 2 more from				Q3′21				Q3′25
Q3'21				Q3′21		. – . – . – . – . – . – . – . – . – . –		Q3′25

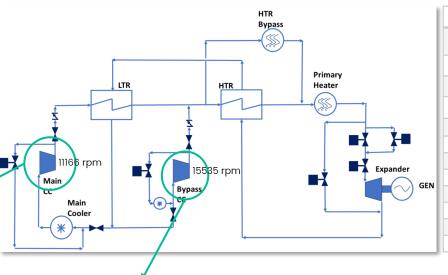
sCO₂-Flex: Baker Hughes Deliverables



- Design of two centrifugal compressors (BCL252/B and BCL303/B) and one turbine expander
- ☐ Test of prototype compressor working close to CO₂ critical point
- Material selection and relevant tests
- Plant simulation in design and off-design condition
- ☐ Scale-up of the system to 100MWe

Project Partners

EDF, BH, JUV, Rina, CVR, Fives, Politecnico Milano, University Duisburg/Essen, University Stuttgart


sCO₂-Flex Compressors

Main CC - Prototype

	мѕсом01	мѕсом02
Compressor Model	BCL252/B	BCL303/B
bearing span [mm]	1127	1059
1st Impeller [mm]	255	255
2 nd Impeller [mm]	255	255
3rd Impeller [mm]	-	255
Rotating speed [rpm]	11166	15535
JB diameter [mm]	90	80
IGV blade number	20	20
Rotor weight [kg]	150	130
Bundle weight [kg]	1400	1800
Inlet flange size	8″	10"
Outlet Flange size	8″	8″

- Suction condition far from CO2 critical point
- Standard impeller design
- Variable IGV at compressor suction

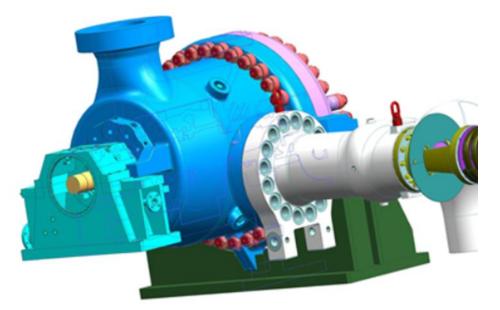
Design Challenges

- ✓ Main compressor suction condition close to CO₂ critical point: large gradients of thermodynamic quantities
- ✓ Turndown requirements 20%-100%
- Critical DGS system: possible phase change during operation

Design Features

- ✓ Main compressor first impeller design ad hoc (splitter impeller)
- ✓ Variable IGV at compressor suction for each compressor
- ✓ VFD EM driver for each compressor
- Modification to the standard DGS system arrangement (psv....)

sCO₂-Flex Expander


Design Challenges

- Thermal stresses very critical due to the fluid properties.
- DGS needed for cycle performance: necessary DGS
 cooling to limit the temperatures. Developed a conjugate
 convective heat transfer model to have the best
 predictions: cooling effect obtained by minimizing thermal
 stresses and cooling flow.
- Material selection: needed a tradeoff among corrosion strength, mechanical properties and costs.
- Extreme power density (power to inertia ratio): rotor design must be suitable for the high speed reached in case of load rejection.

	T suction	[°C]	620
	p suction	[bar]	245.5
	T disch	[°C]	490
Expander	p disch	[bar]	81
	Power	[MWe]	38.61
	Mass flow	[kg/s]	271.8
	Speed	[rpm]	9000

Design Features

- Expander casing **barrel type**
- Inner casing with shrink rings
- Rotor with n°5 axial stages having 50% reaction degree.
- Nickel based alloys for rotor and inner casing, stainless steel for external casing and valve body.

sCO₂-Flex Main Compressor Test

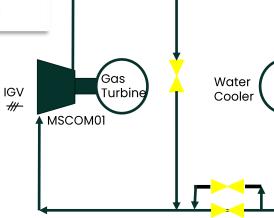


Test Challenges

- Main compressor suction condition close to CO₂ critical point... suction control temperature is critical
- Possible CO₂ phase change in transient conditions, off-design, pressurized stops
- High $ho \cdot v^2$, critical piping and material design

Test Objectives

- Validate compressor performance predictability
- Explore off-design conditions (low/high temperature)


Test arrangement to sCO₂ CC prototype

Control Room

GE10 double shaft (10MW power)

Gear Box with 14000RPM max speed

Compressor baseplate

Baker Hughes >

Two phase gas loop with water coolers (670 bar)

sCO₂-Flex Highlights

- High CO₂ density allows to reduce significantly turbomachinery size. This high power to inertia ratio would require innovative solutions and selection of special materials
- Turbomachinery design has been carried out in line with project requirements (Plant electrical load flexibility, capability to operate close to CO₂ critical point).
- Both turbomachinery layouts equipped with DGS sealing system
- BH finalized design and manufacturing of sCO₂ 5MW prototype compressor operating close to CO₂ critical point. Test scheduled for Q1 '21

