

WG 3 addresses the business & technology trends considering

- the contribution of flexible generation
- of all dispatchable generation sources
- · for power, heat and cooling
- centralized and decentralized
- · with or without embedded storage

as needed for an integrated energy system.

WG3 Topics in IP (3/7)

Thermal generation:

Topic #	Topic description		Year	Target TRL
33	Developing the next generation of flexible thermal power plants	T22, D14	2018	3-7
34	Adaptation and improvement of technologies to novel Power-to-Gas and Power-to-Liquid concepts	T22, D14	2018	3-6

Research challenges:

- · Combustion systems for stable combustion of gas mixtures with hydrogen up to 100%
- · Extension of low emission load range
- · Improving flexible load operation
- · Improved design of combustor liner to reduce surface exposure to hot gas and radiation
- · Development of safe hydrogen starting methodology

Target TRL: 3-6

Estimated budget: 10 Million EUR

WG3 Topics in IP (4/7)

Variable RES:

Ì	Topic #	Topic description	Main FOs	Year	Target TRL
	35	Improved flexibility and service capabilities of RES to provide the necessary ancillary services in scenarios with very large penetration of renewables	T6, T13	2018	3-6
	36	Enhanced smart RES flexible solutions and control strategies for Power Electronic Converter (PEC) dominated grids	Т6	2018	7

Research challenges:

- · Improvement of renewables generators for better adaptation for provision of ancillary services
- New control strategies with support services like storage and manageable RES
- Instability mitigation of RES, new strategies to define stability criteria in future scenarios
- · Investigate different energy mix configurations to ensure electrical system stability
- · Communication protocols with storage systems with PEC

Target TRL:

3-6 25 - 30 Million EUR Estimated budget:

From Vision to Roadmap: on-going process

Reuse in RM: Key structures of ETIP SNET Vision 2050

- From the ETIP SNET Vision 2050 : Five building blocks identified
 - Integration needs for Physical infrastructures
 - Integration needs for Stakeholder organisations
 - Integration needs for Monitoring and Controls
 - Integration needs for Markets
 - Digitalisation enables Services for integrated energy systems

ETIP SNET Roadmap 2020-2030: Building Blocks each features and functions, to be integrated

The ETIP SNET Roadmap defines integration needs for features and functions of each Vision 2050 Building Block

- · with Status Quo and remaining Challenges,
- · High-level objectives,
- · Scope,
- Tasks.
- Outcomes,
- · Impacts,
- · Contributors,
- Budgets,
- Timeline

Roadmap: on-going process

Links between Building blocks and 36 Functional Objectives of the RM 17-26

Example for the PHYS-GEN Building Sub-Block

Features Generation: (PHYS-GEN)	Renewable Electricity features and their integration	Renewable Electricity/Heat features and their integration	Renewable Heating & Cooling features and their integration	Renewable Gas features and their integration	Renewable Fuel features and their integration
Integration Functions	T22, D14, D3, D4				

T22: Flexible (large) thermal power generation D14: Decentralised thermal power generation

D3: Small size DER D4: Medium size DER

All 36 TSO/DSO functional objectives are carefully reviewed, placed into new RM functions (of Building blocks). Where useful, they are merged; Separation T and D only where absolutely necessary.

ETIP SNET Implementation Plan 2020-2023 (IP): RD&I projects integrate - in a measurable way - RD&I features¹ and functions defined in the RM.

The Implementation Plan defines RD&I Projects with

- Time-line for realisation (time-line, priority)
- · What Building blocks defined in ETIP SNET RM are to be considered
- What functions and features defined in ETIP SNET RM are to be integrated with
- · details of needed functions and features
- details for measurable results (with TRL and measure for scalability, replicability)
- What stakeholders/actors are to be involved?
- What are the expected project costs and what amount is expected to be funded?

Implementation Plan: on-going process

Proposed Timelines for RD&I projects (ETIP SNET Implementation Plan)

- When are what types of RD&I results (Key exploitable results) and deployment needs to be achieved at what TRL level?
- Proposal to use five time-line categories for each project in the ETIP SNET Implementation plans:
 - Category "Deployment": wide-spread application of products and services at commercial scale.
 - o Category "High": urgent implementation and demonstration needs.
 - o Category "Medium 2030": research, demonstrated by 2030.
 - o Category "Medium 2040": research, demonstrated by 2040.
 - o Category "Low": research, demonstration between 2040 and 2050.

Position Paper / White Paper

"Flexible Power Generation in a Decarbonizing Europe"

Who is the audience?

Politicians, EU and national Decision Makers, ETIP-SNET members, lobbyists, advisors, plant operators, users of flexible generation, regulatory authorities, NGO's, investors, funding agencies

Position Paper / White Paper

"Flexible Power Generation in a Decarbonizing Europe"

What do we want to achieve?

- understanding the existing energy system in EU (demand & supply)
- providing a forecast on how we see the European energy generation landscape in 2050
- understanding of «flexible generation» (what does it mean?) and its necessity for Europe, its technologies, challenges and future R&D needs (targets)
- explaining definitions and boundaries
- detailing the deliverables of flexible generation
- explaining the economics
- outlining the sector integration
- explaining the contribution of flexible generation to the generation transition and CO2 reduction

Position Paper / White Paper

"Flexible Power Generation in a Decarbonizing Europe"

What is the structure of the paper?

Executive Summary

- 1. Today' situation in the power generation sector in Europe
- 2. European targets with regard to flexible generation
- 3. Energy sources (Coal, Gas, Liquid Fuel, Nuclear, wind, sun, wave, biomass, geothermal, water)
- 4. Technologies today (GT, ST, Hydro, Wind, PV, CSP, Gas Engines)
- 5. Challenges
- 6. Technologies tomorrow (Fusion, Fuel Cells, Nano-Generators, Digitization, Retrofitability incl. fuel switch, short term storage, seasonal storage,)
- 7. Outlook for a generation in a decarbonizing Europe
 - decisions needed by legislation
 - funding requests (R&D and deployment)
 - road map
 - grid prerequisites
 - infrastructure needs
 - economical consequences
- 8. Summary

WG3 White Paper

"Flexible Power Generation in a Decarbonizing Europe"

What is the structure?

- 1. Today's situation in the power generation sector in Europe
- 2. European targets with regard to flexible generation
- 3. Energy sources (Coal, Gas, Liquid fuel, Nuclead, Wind, wave, sun
- 4. Technologies today (GT, ST- SteamTurbine, Hydro, Wind, PV, CS
- Challenges
- Technology tomorrow (Fusion, Fuel cells, Nano-generators, Digita storage, seasonal storage)
- 7. Outlook Generation in a Decarbonizing Europe.
 - Decision needed by legislation
 - Funding requests (R&D and deployment)
 - Roadmap
 - Grid prerequisites
 - Infrastructure needs
 - Economical consequences

WG3 White Paper "Flexible Power Generation in a Decarbonizing Europe"

The new timeline for the creation?

Editor Team to deliver guidance by March 15, 2019 Input to the missing chapters by end March 2019

Editor Team to propose a 1st draft mid April 2019

F2F Meeting in Switzerland between Monday, 22. April, and Friday, 17. May

- Finalization of Draft White Paper
- Update of Roadmap & Implementation Plan (Deadline to comment Version "0.x" is Thursday, 23. Mai)