

ENGIE LaborelecCompany presentation

- Laborelec is a leading expertise and research center in electrical power technology.
- Founded in 1962, Laborelec has over 55 years experience in the power sector.
- Laborelec is a cooperative company with ENGIE and independent grid operators as shareholders.

- Our competencies cover the entire electricity value chain: generation, transmission & distribution, RES, storage, for the industry and other end-users.
- We put a strong focus on the **energy transition** and the 3D's: **decentralization**, **decarbonisation** and **digitalisation**.
- We offer specialised services, R&D and products in each of these domains, to companies in all parts of the world.

European energy market evolution

Energy market is no longer profitable for many plants

Maintenance interval extension

 Maintenance Interval Extension (MIE) is a product for GT end users in challenging market conditions who need to reduce maintenance cost

- GT maintenance schedule is based on OEM recommendation and conservative (and commercial driven)
- What if maintenance could be optimised?
- Optimisation of the maintenance interval
 - Extension of inspection interval
 - Extension of reconditioning interval
 - Extension of part life

Maintenance interval extension How is it done

- Thorough knowledge and understanding of GT design and operation
 - Good understanding of FFF (form, fit, function)

• Form Geometry, weight

• Fit Interface, material technology, thermodynamics

• Function Actions that the part is designed to

- The effect of operating regime must be understood
 - Base-, intermediate-, peak load operation
- This allows to predict and extent your maintenance

Maintenance interval extension How is it done

- GT specific
 - In-house Laborelec knowledge
 - ENGIE fleet REX
 - Life prediction tools
- Unit specific
 - Base-, intermediate-, peak load operation
 - Input from client / unit
 - Scope of work depending on available input & GT specific knowledge

Maintenance interval extension Feasibility assessment

- Feasibility assessment to justify MIE programme
 - Review of O&M inspection reports
 - Witness or perform on-site inspections
 - Operational history of the unit
 - Return of experience (REX) input
 - GT design philosophy
 - Risk assessment and mitigation plan for desired interval
 - Risk mitigation plan & REX dictates the MIE programme scope of work

Maintenance interval extension Feasibility assessment

- Risk matrix of every component of the rotor and all possible damages (will be included in report)
- Risk based on
 - Degree of severity
 - Likelihood of occurrence
 - Detectability
- Low risk (blue): Acceptable risk
- Medium risk (orange): There is an increased risk due to the age and

condition of the components, but acceptable

with precautions taken and unit condition

• High risk (purple): Unacceptable risk

Maintenance Interval Extension 3/28/2019

Maintenance interval extension MIE program

Maintenance interval extension

- The MIE scope is uniquely defined to mitigate the high risks
- It may include (metallurgical) examination of ex-service hardware and stress simulations
- Future follow up of unit/part condition by borescope inspection, review of inspection documents, etc.
- Early involvement of the insurer is key
 - Insurance companies perceive an outage a risk
 - An independent view on the turbine shows the insurer that care is being taken of the equipment

- C2-inspection during summer 2017
- The aim was to skip reconditioning of LPT stage 3 and 4

- Identified risks of LPT B3
 - Microstructure soundness
 - Internal surface condition
 - Mechanical properties
 - Tip shroud deflection
- Scope of work LPT B3
 - Life time analysis (LTA) on ex-service LPT B3
 - On-site NDT inspection
 - On-site 3D scanning

- Ex-service LPT B3 available
- Review of inspection reports
- EOH, OH, starts, trips, etc

Counter	Ex-service	In-service	UOM
Operation hours	22,905	-	Hours
Equivalent operating hours	29,914	31,992	Hours
Weighted operating hours	22,906	28,298	Hours
Veighted cyclic events	700	-	-
Starts	168	272	-
Trips	53	-	-

- Visual inspection of spare ex-service set
 - In a good condition
 - Tip shroud contact surfaces in good condition
- NDT inspection
 - No indications were observed

- Cut-up scheme
- Microstructure is in a good condition
- Coating is in good condition
- Internal surface shows little oxidation

- Metal temperature estimation based on gamma prime coarsening
- Measured at all sections and airfoil side
- Temperature distribution shows a reasonable agreement with ex-service airfoil decolouration
- Metal temperature is not excessively high, i.e. blade is well cooled

Creep test

- 2 samples from root section
- 3 samples from airfoil section
- All results are similar
- No significant creep life consumed
- Hardness test
 - Hardness is well within the material specification

- During the outage
 - 3D scanning equipment brought on-site to measure tip shroud deflection
 - 3D scan comparison of ex-service, new blades and reconditioned blades

 No deformation observed detrimental for continued operation

- Based on the review of thermodynamics, structural mechanics, metallography and geometry it is concluded that reconditioning interval extension is possible
- This is enforced by
 - ENGIE experience from other types of gas turbine units with similar operating conditions
 - Independent scrap rate and cause review of similar GTs matches with findings
 - OEM does not see any show stoppers to skip reconditioning and agreed with outcome
- Due to timing one risk item of LPT B3 was not addressed and the part was replaced
- LPT V3, LPT V4 and LPT B4 are currently back in-service

Conclusion

- Maintenance interval extension covers extension of
 - Maintenance interval
 - Reconditioning interval
 - Life time extension
- MIE scope of work depends on operating regime and REX
- The structured approach provides the risk based opportunities for interval extension
- MIE reduces maintenance costs

We provide worldwide solutions to help our customers successfully come through the energy transition

ENGIE Laborelec

Rodestraat 125 1630 Linkebeek Belgium