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* Big changes of the compressor inlet density with small
variations of pressure/temperature

Temperature turbine inlet conditions together CO2 needs a
proper material selection (>500°C) and thermal management

of sealing

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH

AND DEVELOPMENT, AHN et alii, NuclEngTechnol 47(2015) 647-661
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Technology summary for sCO2

TME Power (MWe)
Eele 03 10 30 10 30 100 300
TM Speed/Size | 75000/5cm 30,000/14cm 10,000/ 40cm 3600/1.2m
Compressor type | Single stage Radial multi stage |
: [ | —=
: - { Axla: multi stage |
Turbine type Single stage Radial multi stage ]
[~ single stage Axial ___multi stage
: 0
Bearings Gas Foll | | Hydrodynamic oil |
| Magnetic __ | Hydrostatic |
Seals | Adv l?lb'_'lfl'lnth -]
; | Dry lift off |
: n
Freq/alternator SR — J : | w::uim. Synchronous |
; [__Gearbox,Synchronous ]
- o H
Shaft | DO F s
Configuration : L Single Shaft
. :

Sienicki et al., .Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and the Optimal Size for
a Mext-Step Supercritical CO2 Cycle Demonstration®, SCO, Power Cycle Symposium, May 2011

* The high density of sCO2 allows to
reduce the turbomachines footprint

* Below 10 MWe turbomachinery
dimensions are very small leading to an
increase of parassite losses (windage,
internal leakages) with subsequent lower
efficiency than larger sizes

@ What is the «best commercial» size?

100 MW: D =400 mm
10 MW: D =160 mm

D;0omw/Diomw = 2.6

Apollo/STEP sCO2 16MW Turbine rotor
GERC Courtesy
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Compressor layout for a 10MWe sCO2 cycle

Normalized Pol. efficiency vs Impeller diameter
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& small dimensions = windage and parassite losses becames
important with impact on efficiency

T 1 K
‘ v Wmdage Power P~ (?) pﬁ * Moreover, the real gas effects close to the critical point
-

jeopardize the performance predictability

Rotor

PREDICTION OF WINDAGE
POWER LOSS IN ALTERNATORS

IS by James B Veancit * Also the thermodynamic FAT can be done only in Type |
Lewis Research Center

Cloveland, Obio conditions. Similitude conditions are difficult to be reached
(low volume ratio of Main Compressor)
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Turbine

Sunshot Turbine Design Radial centripetal

4 MW turbine (Oregen)
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Supercritical CO2 Power Cycles, AIAA SciTech, Jan 2019, Douglas Hofer, GE Research

* For small power, radial and axial turbines have comparable efficiencies
* Predictability of performances is better than compressor (gas is more «ideal»)
* High temperature and heat management at end seal location A
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Dry Gas Seal technology
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Figure 15 - SINGLE SEAL TYPE

Figure 17 - Tandem seal with intermediate labyrinth seal
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Current DGS technology.
Example on a 80bar CO2 sealing

» Expected leakage/seal: 0.0006 kg/s
* Total CO2 leakage from turbomachines:

0.0006 x 2 (DGS) x 3 (2 CC + 1 TUR) = 0.04 kg/s

Single DGS arrangement offers a shorter machine (good for
rotordynamics) but leakage cannot be recovered

Tandem DGS arrangment offers a better recovery of leakage,
but higher cost, longer rotor, lower reliability

How much important is this leakage respect to other
leaking parts (e.g. Flanges, valves, etc. etc.) ?

DGS operating with high viscosity, high density gas.
Heat management of seals.
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Integrated solutions

e Turbine and compressor in the same casing
* Pro’s: minimization of the number of DGS, compact solution
e Con’s: rotordynamics, plant start-up, thermal management, complex solution

» Sealed solution (integrated machine):
* Pro’s: no leakages, oil free
» Con’s: motor and compressor shall have the same speed ... Limits on max power/speed,
magnetic bearings working with high density fluid

[} ‘g
Advanced technology -~
* Plasma seals (max pressure?) Py
° . . ? F, 7 .~". - . -
Magnetic couplings (max torque?) L AR L -

»

* Magnetic gear (max torque / speed ratio?) \ P L

Example of integrated machine
BHGE - Integrated Centrifugal Compressor (ICL)
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Gearbox
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H5S RPM
Parallel Axis:
Gear Ratio< 6
Max Power: 45 MW

Power distribution
Gear Ratio > 6
Max Power: 45 MW

Parallel axis gearboxes can be used only for compressors
in a hypotetical 50MWe cycle

Epicyclical gears are good for high gear ratios and they are
applicable on the turbine up to 30MWe power cycle

For a 50MWe cycle the constraints on gearbox could force
the compressor selection to a not optimal choice.

Gearbox cannot be used in cycles with Power cycle
>100MWe, efficiency gain but forced to run at electric
machine speeds

How important is the efficiency of turbomachinery in
the overall cycle economy?
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Materials

e (CO2 at temperatures up to 350 °C and pressure higher than 15 bar oxidites metals. The
corrosion rate is usually mderate to allow the use of mild steels.

« Material selection for compressors can be standard as per manufacturer experience.
Stainless steel or coatings are however reccomended to protect from general
corrosion (humidity)

« Above 350°C the metal carburization occurs, only few experimental data at long exposure
time are available in CO2 in thse conditions

* Upto500°C, >18%Cr stainless steels seem to give small corrosion rates. Good compromise
between durability and cost

* For T>500°C Ni-based alloys shall be used. High cost.

* Material selection for turbine shall include Ni-alloys. Coatings are desiderable to
reduce cost and to allow raw material availability
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Operability

* The high density variations close to the critical point leads to a proper control of MAIN
compressor in order to make it working in optimal conditions

e Main Compressor control strategies shall include speed variation and Movable Inlet Guide
Vanes (MIGV). The use of both could give good combination in the flow-head diagram with
proper efficiency

* The turbine could be controlled with valve (to be checked the leakages). Mechanical design
of movable nozzles are challenging because of the high temperature

* Understanding operability in transient conditions is very important to chech the machine
controllability

* The partial load management is also important. High operative envelope leads to lower
efficiencies

* The final application of the plant could have an impact on the turbomachinery
selection and performances
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Conclusions and
discussion points
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Conclusions and further development

* Turbomachines are more challenging when dealing with small cycle power (small
dimensions). Standardization of components will be beneficial. Proper commercial scale
still to be defined.

* Turbomachine efficiencies increase with dimensions

« Thermal management of the turbine needs additional insights

* Operability of the compressor close to the critical point needs additional insights (tests)
 A>150 MWe cycle could use turbomachines with «normal» size

* Sensitivity of the cycle efficiency with the turbomachinery efficiencies: is maximizing the
turbomachine’s efficiency the best optimization objective function?

* How can the market be segmented in order to have the best options (e.g. Efficiency vs
flexibility)?
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