

ENGIE, a global energy and services group

Focus on three core activities

ENGIE TODAY

ENGIE Laborelec

- Laborelec is a leading expertise and research center in electrical power technology.
- Founded in 1962, Laborelec has over 55 years experience in the power sector.
- Laborelec is a cooperative company with ENGIE and independent grid operators as shareholders.

- Our competencies cover the entire electricity value chain: generation, transmission & distribution, RES, storage, for the industry and other end-users.
- We put a strong focus on the energy transition and the 3D's: decentralization, decarbonisation and digitalisation.
- We offer specialised services, R&D and products in each of these domains, to companies in all parts of the world.

Additive Manufacturing as key enabler for operational excellence Launch of ENGIE AM Expertise Centre in late 2015

Additive Manufacturing as key enabler for operational excellence

Simple facts

Production of 10mm-cube in IN718 by selective laser melting requires:

- 200 meters of scanned lines at a layer thickness of 50µm!
- 333 meters of scanned lines at a layer thickness of 30µm!

Fast and local welding process with high heating/cooling cycles

Additive Manufacturing Quality Control High-level Overview

- Hardware
- Software
- Geometry & Build Strategy
- Feedstock
- ...
- Process simulation

BUILD JOB COMPLETED

- Log files (O₂, pressure...)
- Layer Control System
- Part Monitoring (distortion)
- Melt Pool Monitoring (dimension & emissivity)
- ..
- Real time process control loop

High-Level Overview

Process Repeatability

- Consistent product quality from build job to build job
- Powder management, storage and reuse

Process Qualification

- Process parameters optimization
- Sensitivity analysis
- Transferability from coupons to industrial part

Process Reproducibility

- From machine to machine (same SLM brand)
- From machine to machine (different SLM brands)

Process Stability

- Consistent product quality throughout the build height
- Consistent product quality on the entire build plate

Challenges for production of high-end components Process stability & reproducibility

Large quality discrepancy for heavy-loaded platform without careful machine fine-tuning, even with optimal laser process parameters

Impact testing 136 J vs. 16 J

Process Qualification

 Material database build up through extensive test program (creep! Fatigue!)

Process Stability

 Consistent product quality on the entire build plate

Process Stability

 Consistent product quality throughout the build height

Process Qualification

Transferability from coupons to industrial part

Our Approach

Applied research as basis for our certification project

- In total, more than 30 jobs have been achieved in this framework:
 - > 850 Charpy test specimens analysed
 - Sensitivity analysis on gas speed, filter quality, build sequence
- Testing campaign also includes tensile testing

Our Approach

Applied research as basis for our certification project

- Same build strategy & laser parameters!
- Charpy V-notch toughness values over the build platform

	87	70	61	66	32
	54	74	49	75	47
	79	76	69	54	61
	73	77	89	47	35
	73	33	52	60	45
76	71	85	78	49	
65	65	92	64	39	
61	82	56	35	42	
58	47	50	25	27	
40	49	33	23	24	

Baseline values

	96	96	89	89	92
	101	95	94	98	106
	98	98	98	104	116
	91	97	94	113	125
	93	97	101	75	83
100	101	99	96	144	
95	99	89	106	133	
111	92	99	102	70	
96	102	103	102	118	
104	101	102	111	112	

Achieved values

ENGIE Certification Project

Main Goal

Achieving ENGIE AM Facility Qualification & Material Certification

Any Questions?

1.006+06

