ETN Meeting & Workshop March 2019 in Pau (France) 27./28 March 2019

Assessing Remaining Life of Critical Gas Turbine Parts

Institute of Test and Simulation for Gas Turbines
German Areospace Center
Prof. Dr. S. Reh
Institute Director

Wissen für Morgen

- Introduction of German Aerospace Center
- Introduction of Institute of Test and Simulation for Gas Turbines
- Life Assessment for Gas Turbine Parts

- Introduction of German Aerospace Center
- Introduction of Institute of Test and Simulation for Gas Turbines
- Life Assessment for Gas Turbine Parts

Introduction of German Aerospace Center

- 20 Research Site in Germany
- 40 research institutes dedicated to: propulsion, combustion, gas turbines, ...
- Offices in Paris, Brussels, Washington and Tokyo
- 8000 Employees
- Large test facilites (wind tunnels, compressor, combustor, turbine)
- Operating 2nd largest research aircraft fleet in world
- Research in Aeronautics, Space, Energy & Mobility

2nd largest research fleet worldwide

Aeronautics

Space

Energy

Mobility

- Introduction of German Aerospace Center
- Introduction of Institute of Test and Simulation for Gas Turbines
- Life Assessment for Gas Turbine Parts

Introduction – DLR-Institute SG in Augsburg Key Figures of the Institute

- Founded in June 2017
- o Investment: ca. 48 Mio. €
- o Base funding: 8,3 Mio. €/a
- Targeted head count: 50 60
- Current head count: 18
- Located in Augsburg Innovation Park
- o Property 13000m² purchased
- Planning of new institute building started
 → Moving in 2022
- Close cooperation with major universities established (Munich, Manchester, UCB, Lyon)
- Office and lab space rented in Technology Center Augsburg
 → Simulation and Testing started

Introduction – DLR-Institute SG in Augsburg Research Topics

Research Fokus:

 Test and Simulation of the Structural Lifetime of GTs

Research Groups on:

- Lifetime assessment of components under real engine conditions (MTC)
 - → mechanical
 - → thermal
 - → corrosion
- High-temperature testing of components & specimen under pressure w. real combustion gas
 - Spin testing for lifting of bladed rotors with 1:1 size

- Introduction of German Aerospace Center
- Introduction of Institute of Test and Simulation for Gas Turbines
- Life Assessment for Gas Turbine Parts

Life Assement for Gas Turbine Parts General Approach

- Numerical assessment method
 - Digitize Geometry
 - Generate boundary conditions
 - Build FEM model with 1:1 size crack as inspected
 - Assess remaining lifetime with crack propagation by adapting FEM model accordingly
- Guidelines based on experience
 - Fast ... if it works
 - Tend to be arbitrary lack of real life physics

Life Assement for Gas Turbine Parts General Approach

- Numerical assessment method
 - Digitize Geometry
 - Generate boundary conditions
 - Build FEM model with 1:1 size crack as inspected
 - Assess remaining lifetime with crack propagation by adapting FEM model accordingly

Time consuming

- Guidelines based on experience
 - Fast ... if it works
 - Tend to be arbitrary lack of real life physics

If it would be this easy ...

Life Assement for Gas Turbine Parts Fast assessment method of turbine part life

- New method to assess part life (since a few years):
 - Phase Field Method for Damage
 - Applicable for simple models
 - No remeshing effort model of undamaged part is OK
 - Real life damage can be captured (e.g. bifurcation)
 - Life until initial failure and remaining lifetime after failure and after repair can be assessed
 - Assessment of remaining life is possible within hours or a few days depending on complexity (introduce cracks & damage as inspected)

Requirements:

Digital models of critical parts prepared ahead of time

Life Assement for Gas Turbine Parts Assement Procedure

- **→** Mechanical Problem
 - Balance moments
 - Energy Balance
- > Thermal Problem
 - Heat Conduction
- Chemical Problem (Corrosion/Oxidation)
 - Diffusion and Degradation
- Lifing and Fracture
 - Crack Initiation & Damage Progression

Vane

Life Assement for Gas Turbine Parts Remaining Lifetime Assessment Suggestion for Examples

- Digitize Crack from Inspection (incl. bifurcations)
- Project crack into digital model of part
 - Damage as inspected is initial starting point of lifetime assessment
 - Calculation of remaining life can be automated → no specific skills needed
- Numerical effort for lifetime assessment is in the order of hours or a few days
- Assessment is still based on physical methods

Life Assement for Gas Turbine Parts Contribution to Guideline Generation

- Select as a set of critical parts as indicated by field reports
- Assume typical damages seen in the field
 - → analyze the remaining lifetime using fast phase field method to obtain additional data points
- Combine guidelines without physical basis with the additional data points to develop more physical based guidelines
- Numerical effort for lifetime assessment is in the order of days or weeks – can be done up front (if tool set-up is prepared)

Thank you for your attention!

