

EXPECTATIONS OF AN OPERATOR ON GT COMPONENTS LIFE ASSESSMENT

Jean-Louis Meyer

ETN Workshop – March 2019 – Pau (France)

UNEXPECTED FINDING DURING A ROUTINE BOROSCOPIC INSPECTION

- F-class unit operated in base load (6000-7000 hours/year)
- vibrations trends modifications observed on GT bearings by EDF e-monitoring center
- turbine first stage bucket issue (tip cap loss) observed during a boroscopic inspection
- next planned outage : HGPI in around 3500 hours
- do the first stage buckets need to be replaced before restarting the unit?
- very limited time to make a decision (a few hours)

UNEXPECTED FINDING DURING A PLANNED **OUTAGE**

- F-class unit operated in cycling mode (4000 hours/year & 80-100 starts/year)
- unit opened for compressor upgrades
- significant cracks observed on turbine second stage nozzles
- next scheduled outage : HGPI to be made two years later
- do the second stage nozzles need to be replaced before restarting the unit?
- limited time to make a decision (a few days)

EXTENDING THE MAINTENANCE INTERVALS

- EDF is operating in peak load a fleet of five GE GT13E2 on two sites
- commissioning dates of the five units are quite close
- added value of an extension of the maintenance interval between two major inspections (C type):
 - > to avoid the purchase of some new parts
 - to better manage parts repairs
 - to save money in a short/mid term
- are the design margins of some parts limiting the opportunities of maintenance interval extension?
- weeks/months to make a decision

EXPECTATIONS ON COMPONENTS LIFETIME ASSESSMENT?

- the ideal answer would be a 3D modeling tool which could assess the residual life time of a part based on damage configurations and operation parameters, but
 - > this would need a detailed knowledge of the parts design and flow characteristics, which:
 - ✓ is difficult (impossible ?) for a non-OEM entity to access
 - ✓ will need a lot of time (and money) to be developed for a single component.
 - > it will need specific skills to be used properly
- another answer could be <u>operational</u> guidelines, which could be used by an engineering team on site, and which would allow to:
 - point out the risks associated with typical damages and operation modes (peaking, cycling and base load)
 - > have some generic figures on the tolerances and remaining life of the gas turbine main components for typical damages (cracks, creep, oxidation, ,,,)
 - > ask the good questions in order to make the right decision at the right time
- proposal for parts to be assessed first :
 - > F-class turbine first stage bucket
 - > F-class compressor first rotating blade

MANY THANKS FOR YOUR ATTENTION ANY QUESTIONS?

