

A case study on MGT-based CHP systems for urban commercial applications: case of London

Dr. Jafar Alzaili Prof. Abdulnaser Sayma Nov 2018

Department of Mechanical engineering and Aeronautics

What it is about

- > Application of MGTs in small-scale CHP in urban areas
- > the battle against Gas Engines
- NOx story: Do we need to cost it to win?
- > A case study for applications in London

Application of MGTs in small-scale CHP in urban areas

- ■70% of the world's population will be living in cities by 2050
- Growing pressure on resources and infrastructure
- Means we need to become more efficient and identify new lower carbon sources of supply
- Needs to be managed flexibly so that we are always utilising the lowest carbon and cheapest energy

Application of MGTs in small-scale CHP in urban areas

- ■Nearly 80% of emissions come from buildings
- ■30% of London's CO₂ emissions and approximately 50% of its energy demand are attributable to heat
- ■Great opportunity for CO₂ reduction within London is to reduce demand for heat through building retrofit and low carbon, local (decentralised) heat supply
- ■Focus on connecting to medium and large scale heat networks
- Decarbonising heat networks
 - ■Transition increasingly to renewable and secondary heat sources

Application of MGTs in small-scale CHP in urban areas

- Government has announced recently £320m for local authorities to develop heat networks
- targets mature technologies at TRL9 or higher
- good opportunity for small-scale CHP

Drivers and incentives for small CHP systems in urban areas

- Driving forces
 - Economic: lower energy bill
 - Emissions reduction
 - Potential reduction of up to 200 kg/MWh compared to conventional separate generation
 - Security of supply
- Incentives
 - Climate Change Levy
 - Carbon Price Floor
 - ■Enhanced Capital Allowance

- Economic:
 - Payback periods < 4 years</p>
 - The initial capital outlay
 - Variability of fuel prices
- Air quality issues in urban areas
 - London particular:
 - Health impact: 88,113 life-years lost
 - Economic impact: £1.4 Billion to £3.7 billion
 - UK Standards
 - Clean Air Act (1956): mainly to abate use of coal for heating
 - Sustainable Design and Construction by GLA (2014)

- Air quality issues in urban areas
 - Medium Combustion Plant Directive (2017)
 - for combustion capacity of 1 MW to 50 MW
 - implementation of the MCPD in the UK could contribute to 9% of NO_x by 2030
 - Germany's TA-LUF regulations
 - Netherland's BEMS regulation

Prime mover	GLA	German TA-LUFT	Dutch BEMS	MCPD	
				Existing	New
GT	0.4	0.66	1.2	1.3	0.4
GE	1.1	1.3	0.9	0.5	0.2

comparison of different NO_x emission standards (g/kWh)

- Air quality issues in urban areas
 - concerns over the possible impact an increase of the current CHP systems could have on the air quality of urban areas

25% of power in form of DG by 2025

Too much?!

DG NO_x > Transport emission by 2025 in London!

■Future: Sensitivity to Gas and Electricity Prices, policy ,etc.

■BUT we are adaptable and clever!

NO_x Valuation?

- small urban areas £18,000/tonne NOx
- inner London £120,00/tonne NOx
- cost of abatement?

All these should be part of CBA

Example of Sweden: reached maximum reduction of 40%

Can we do any better?

- The NPV and payback period calculations
- ■The emission impact of the different CHP systems
- ■The sensitivity analysis of the CO₂, electricity, and gas prices
- The sensitivity analysis of the discount count rate.

■ The NPV under the three scenarios for the different CHP systems

■ Payback under the three scenarios for the different CHP systems

Scenario	A800	A400	C600	СНР
Small Urban Area	2.6	2.18	3.8	9.5
Inner London	2.9	2.5	5.7	-
MCPD	2.50	2.2	3.6	7.5

■ Social impact cost of emissions (£) from C600 and Gas Engine CHP Systems for small urban areas (based on CO₂ benefits and NO_x social cost

Sensitivity analysis for MCPD NOx emissions standards

Conclusion

- Identify the factors driving the uptake of small scale CHP systems (100 kW-2MW) in urban areas and the barriers to their successful uptake
- Evaluating the methodologies to assess the economic feasibility of CHP systems.
- Devise a model for calculating and comparing the benefits and costs of small gas turbines and reciprocating gas engine CHP systems in urban areas.
- Apply the model to an urban area based case study to evaluate the economic performance of each CHP system.
- Formulate recommendations on the economic feasibility of using small gas turbine in CHP systems for urban area application.

T: +44 (0)20 7040 5060 E: a.sayma@city.ac.uk www.city.ac.uk

