Desalination based on micro gas turbines

Flexible, robust, economical... better?

Lourdes García-Rodríguez¹, Diego Alarcón-Padilla², David Sánchez¹, Arturo Buenaventura³

¹Department of Energy Engineering University of Seville Spain

²Plataforma Solar de Almería CIEMAT Spain

³Abengoa Technology Incubator Spain

0. Contents

- 1. Overview of water needs
- 2. Renewable Energy (RE) driven desalination
 - Commercially available technologies
 - Technologies under development
- 3. Interest of solar desalination
 - Reverse Osmosis
 - Multi Effect Distillation
- 4. Proposed mGT-based application
 - Concept
 - Economic assessment
 - Thermodynamic background
- 5. Conclusions
- 6. Ongoing research

1. Overview of water needs

1. Overview of water needs

1. Overview of water needs

Water Stress by Country: 2040

NOTE: Projections are based on a business-as-usual scenario using SSP2 and RCP8.5.

For more: ow.ly/RiWop

1.1. Some facts about MENA by the WB

- MENA is a global hotspot of unsustainable water use, especially of groundwater. In some countries, more than half of current water withdrawals exceed what is naturally available;
- 82% of wastewater is not recycled, presenting a massive opportunity to meet water demands;
- The region has the greatest expected economic losses from climate-related water scarcity, estimated at 6–14 percent of GDP by 2050;
- Despite its scarcity, the region has the world's lowest water tariffs and the highest proportion of GDP (2 percent) spent on public water subsidies;
- Flood and drought risks are increasing and are likely to harm the poor disproportionately;

1.1. Some facts about MENA by the WB

1.1. Some facts about MENA by the WB

1.2. Some facts about Algeria

Source: S.E. Ali Rahman, C. Brahim, *Water Supply Prediction for the Next 10 Years in Algeria: Risks and Challenges,* Irrigat Drainage Sys Eng 2017, 6:3

1.2. Some facts about Algeria

Source: S.E. Ali Rahman, C. Brahim, Water Supply Prediction for the Next 10 Years in Algeria: Risks and Challenges, Irrigat Drainage Sys Eng 2017, 6:3

1.2. Some facts about Algeria

Small communities Low water stress No access to grid

Small-scale, off-grid desalination driven by renewable energy

1.3. Case study: Ksar Ghilène, Tunisia

300 inhabitants
150 km from closest grid
60 km from closest fresh water well
Water supply formerly with trucks

1.3. Case study: Ksar Ghilène, Tunisia

PV-driven Reverse Osmosis (RO) desalination plant (Brackish water)

Courtesy: Canary Islands Institute of Technology

10,5 kWp PV facility 50 m³/day

2. RE driven desalination-SoA

- Wind-driven RO desalination: commercially available and cost effective (<2.5 €/m³)*
- PV-driven RO desalination: commercially available, higher costs inherent to discontinuous solar energy resources (3-3.5 €/m³ for 2000 hours/year @full load)

Sea Water Reverse Osmosis (SWRO)

2. RE driven desalination-SoA

- Wind-driven RO desalination: commercially available and cost effective (<2.5 €/m³)*
- PV-driven RO desalination: commercially available, higher costs inherent to discontinuous solar energy resources (3-3.5 €/m³ for 2000 hours/year @full load)
- Wave energy-driven RO desalination in development. No technical bottlenecks
- CSP-driven desalination unfeasible due to costs and auxiliary power consumption

2.1. Commercially available technologies

- PV-driven or Wind-driven SWRO with storage systems:
 - Wind-driven RO: enables operation overnight (if wind available)
 - Wind/PV-driven RO: large batteries to enable operation in a standard on/off mode
 - Wind/PV-driven RO: multiple SWRO plants of the same capacity running in parallel
 - · Wind/PV-driven RO: modular approach with multiple, disimilar units in parallel

Standard approach

Source: B. Peñate, F. Castellano, A. Bello, L. García-Rodríguez, Assessment of a standalone gradual capacity reverse osmosis desalination plant to adapt to wind power availability: A case study, Energy 36 (2011) 4372-4384

2.1. Commercially available technologies

Wind SWRO: 8000 €/m³/day

Low-cost PV SWRO DESSOL+ (2017)

Source: García-Rodríguez, Renewable energy applications in desalination: state of the art, Solar Energy 75 (2003) 381-393

2.2. Technologies under development

www.resolutemarine.com

Take-Off

Wave Energy

Desalination

3. Interest of solar desalination

- 2040?The region subjected to the most severe

stress is very similar to the sun-belt

Remember water stress levels projected for

Map developed by 3TIER | www.3tier.com | © 2011 3TIER Inc

3TIER®

3. Interest of solar desalination

- Slobal Mean Wind Speed at 80m
- STIER

- Remember water stress levels projected for 2040?
- The region subjected to the most severe stress is very similar to the sun-belt
- · But this is not the case for wind

3.1. Solar desalination: Overview -RO-

Reverse Osmosis (RO): Electricity, (2+1) kWh/m³ (Club Lanzarote Playa Blanca, Lanzarote)

Reverse osmosis

3.2. Solar distillation: Overview -MED-

Water production: 3 m³/h

Multi-effect distillation (MED)

-PSA- CIEMAT
Heat source, 70°C 230 MJ/m³

Electricity, 2.2 kWh/m³ due to cooling flow (seawater)

Condensate \

STEAM JET EJECTOR

3.2. Solar distillation: Overview -MED-

Source: A. de la Calle, J. Bonilla, L. Roca, P. Palenzuela, *Dynamic modeling and simulation of a solar-assisted multi-effect distillation plant*, Desalination 357 (2015) 65-76

CONCEPT: MED & DEAHP
Heat source, 180°C 115 MJ/m³
Electricity, 1 kWh/m³

Water production: 3 m³/h

- Unit output 10-30 kWe
- Conventional SWRO: 3.3-10 m³/h per SMGT
- · Possible (parallel) array of SMGTs
- 24/7 operation if backed up by fossil fuel

C: Desalination/Water treatment system

- · Unit output 10-30 kWe
- Conventional SWRO: 3.3-10 m³/h per SMGT
- Possible (parallel) array of SMGTs
- 24/7 operation if backed up by fossil fuel

First prototype ENEA-Italy (2017)

Better than PV???

Industrial effluents water treatments

C: Desalination/Water treatment system

Desalination based on micro gas turbines Flexible, robust, economical... better? L. García-Rodríguez; D. Alarcón-Padilla; D. Sánchez, A. Buenaventura 2nd European Micro Gas Turbine Forum, June 26-27, Madrid

consumption

- Unit output 10-30 kWe
- Conventional SWRO: 3.3-10 m³/h per SMGT
- Possible (parallel) array of SMGTs
- 24/7 operation if backed up by fossil fuel

Source: G. Gavagnin, D. Sánchez, J.M. Rodríguez, A. Muñoz, G.S. Martínez, *Economic Competitiveness of Dish-MGT Solar Power Genearators*, Presented at ASME Turbo expo 2017, Charlotte, NC

INCREASING COMPLEXITY

Desalination based on micro gas turbines Flexible, robust, economical... better? L. García-Rodríguez; D. Alarcón-Padilla; D. Sánchez, A. Buenaventura 2nd European Micro Gas Turbine Forum, June 26-27, Madrid

C: Enhanced Desalination/Water treatment system

4.1. Desalination driven by SMGT (hybrid)

Availability of thermal energy enables:

- · Concentration of effluent for Zero Liquid Discharge (ZLD) solid waste
- Complementary distillation system to blend product of two desalination systems (higher production and lower specific electric power consumption)

4.2. Economic assessment (I)

Feed: seawater	MED	SWRO	SWRO	MED	SWDO 0
(40686 ppm & 25°C)			+ FWH	+SWRO	SWRO - 2
	Variable O&M Costs - Cost of Electricity [€/m³]				
South Africa (LCoE=0.078 kWh)	0.19	0.23	0.24	0.17	0.23
Morocco (LCoE=0.104 kWh)	0.25	0.31	0.32	0.23	0.31
China (LCoE=0.183 kWh)	0.44	0.54	0.56	0.40	0.54
	Fixed O&M Costs [€/m³]				
	0.17	0.33	0.33	0.33	0.33
		Capital cost [€]			
MED (1200 €/m³/d))	31710	0	0	31710	0
SWRO (1000 €/m³/d)	0	26424	26424	26424	52848
Total	31710	26424	26424	58134	52848
		1 - LCoE=0.07).078 €/kWh		
Amortisation [€/year]	14215	11846	11846	26061	23692
Annual expenditures - 50% CF [€]	15913	14547	14592	30880	29094
Annual production - 50% CF [m ³]	5822	4822	4822	9645	9645
Estimated water cost [€/m³]	3.30	3.02	3.03	3.20	3.02
	Case 2 - LCoE=0.183 €/kWh				
Amortisation [€/year]	14215	11846	11846	26061	23692
Annual expenditures - 50% CF [€]	15913	14547	14592	30880	29094
Annual production - 50% CF [m ³]	5822	4822	4822	9645	9645
Estimated water cost [€/m³]	3.55	3.33	3.35	3.43	3.33

Source: D. Sánchez, M. Rollán, L. García-Rodríguez, G.S. Martínez, Solar Desalination Based on Micro Gas Turbines Driven by Parabolic Dish Collectors, Submitted to ASME Turbo Expo 2019, Phoenix, AZ

4.2. Economic assessment (II)

- A hybrid SMGT can produce water at a cost ranging from 3.0 to 3.5 €/m³;
- Exploiting the waste heat from the engine in a MED plant is not worth cost-wise;
- The system is thus reduced to SMGT-RO;
- The unit can be sized according to a variable demand of electricity, fresh water and heat;
- Some references:
 - On-grid SWRO: ~0.5 €/m³ (Tawelaah RO IWP Saudi Arabia: 908400 m³/d 0.43 €/m³ 0.076 €/kWh)
 - Off-grid Wind+SWRO (+batteries): 1.2 €/m³
 - Off-grid PV+SWRO (+batteries): 2.5-3.0 €/m³

Market opportunity
Worth of flexibility?
Worth of reliability?
Worth of 24/7?

4.3. Thermodynamic background

Specific solar energy consumption, kJ/kg

5. Conclusions

- Desalination based on micro gas turbines feature:
 - Cost-effective water costs: 3-3.5 €/m³
 - Higher reliability
 - Maintenance driven by RO plant
 - Maintenance-free prime mover (oil-free, long TBO)
 - No need for auxiliary systems (batteries, diesel gensets)
 - 24/7 operation
 - Fuel flexibility
 - No NOx (NG-driven)
 - High grade, clean heat (225°C)

6. Ongoing research

- MSCA RISE programme REMIND (2018-2022)
 - Coordinated by University of Callabria
 - 8 partners: Italy, Spain, Chile, Ecuador
 - Budget 1.4 M€

REMIND - Renewable Energies for Water Treatment and Reuse in Mining Industries

- Interreg-Atlantic programme EERES4WATER (2019-2021)
 - Title: 'Promoting the Energy-Water Nexus through Renewable Energy and Energy Efficiency'
 - Coordinated by Technical Corporation of Andalusia CTA
 - 18 partners: Spain, United Kingdom, Ireland, Portugal, France
 - Budget 3.1 M€

Desalination based on micro gas turbines

Flexible, robust, economical... better?

Lourdes García-Rodríguez¹, Diego Alarcón-Padilla², David Sánchez¹, Arturo Buenaventura³

¹Department of Energy Engineering University of Seville Spain

²Plataforma Solar de Almería CIEMAT Spain

³Abengoa Technology Incubator Spain

