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Objectives

• Ambient condition impact on microturbine performance

• Performance of mGT versus ICE at part load

• Ambient condition impact on mGT fuel cell hybrid systems

• Hints on innovative micro-turbomachinery for energy harvesting
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Motivations and Background
MOTIVATIONS

• Characterization of engine with respect to ambient conditions for PUMP-HEAT H2020 EU Project

• Experimental analysis of microgas turbine based on years of field data

• Focus on impact that ambient temperature has on performance

BACKGROUND

• Analysis based on inlet temperature available at simulation level in different literature works (e.g. Caresana et al. , 2014, 
simulated the impact of the ambient temperature in details)

• An experimental analysis has been carried out at the Innovative Energy System Laboratory (IES Lab), TPG-DIME, Genoa, Italy, 
on a dedicated modified rig by Ferrari et al. In 2016 

EMGTF - November 2018 - Madrid (ES) 
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Background analysis
• Two works are considered as reference

• They are both focused on the same engine i.e. Turbec T100 CHP

2 – Caresana F., Pelagalli L., Comodi G., Renzi M., 2014, “Microturbogas
cogeneration systems for distributed generation: effects of ambient 
temperature on global performance and components”, Applied Energy, 
vol. 124, pp. 17-27.

1 – Ferrari M.L., Traverso A., Massardo A.F., 2016, “Smart 
polygeneration grids: experimental performance curves of different 
prime movers”, Applied Energy, vol. 162, pp 622-630.

• They introduce different correction curves due to ambient temperature

• In both cases the humidity is neglected

• Focus on electric power, thermal power, fuel consumption and efficiency

EMGTF - November 2018 - Madrid (ES) 
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1 – Ferrari M.L., Traverso A., Massardo A.F., 2016, “Smart polygeneration grids: experimental performance curves of different prime movers”, Applied Energy, vol. 162, pp 622-630

• This work is carried out at IES Lab of TPG in Savona

• The laboratory hosts different installation for studies on advanced energy systems

1. 450kW(em) SOFC/Gas Turbine Hybrid System Emulator

2. A smart grid emulator, including a microgas turbine, internal combustion engine, thermal storages, solar panels

3. A laboratory on hydrogen storage system

4. 30kW(em) SOFC/Turbocharger hybrid system

5. 250kW Polymeric Fuel Cell Stack laboratory for marine application

6. A wave flume facility for experimental analysis on wave energy converter

• The modified Turbec T100 was used to study the impact of the ambient temperature on the global performance

• A heat exchanger controls the compressor intake temperature

• Three temperatures are investigated: 17°C, 22°C and 27°C

Background analysis
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2 – Caresana F., Pelagalli L., Comodi G., Renzi M., 2014, “Microturbogas cogeneration systems for distributed generation: effects of ambient temperature on global performance and components”, Applied Energy, vol. 124, pp. 17-27

• In this work an in depth analysis is carried out at simulation level

• The model is aligned against experimental data based on their Turbec T100 test rig

• The impact of the ambient temperature is focused both on global performance and on single 
component operating point

Background analysis

EMGTF - November 2018 - Madrid (ES) 
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Introduction

2 – Caresana F., Pelagalli L., Comodi G., Renzi M., 2014, “Microturbogas cogeneration systems for distributed generation: effects of ambient temperature on global performance and components”, Applied Energy, vol. 124, pp. 17-27

• Both works are focused on Turbec T100 PH
• The first one is based on experimental measurement from a modified engine working in controlled intake conditions

• The second one consider a validated model and detailed simulation results for each conditions are analysed

• These two works propose different corrections for engine perfomance

• Variation obtained for each 1°C from 15°C in percentage is reported below

Correction 1 Correction 2
Pel -0.92% -1.22%
Pth +1.19% -0.10%

1 – Ferrari M.L., Traverso A., Massardo A.F., 2016, “Smart polygeneration grids: experimental performance curves of different prime movers”, Applied Energy, vol. 162, pp 622-630

• These values were considered background reference for the analysis carried out in the present work

EMGTF - November 2018 - Madrid (ES) 
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Investigated Engine

• Present work investigates a standard AE T100 microgas turbine 

• The engine has been tested within a room with controlled temperature

• The influence of the ambient temperature has been tested through different
days of operation

NOMINAL DATA

• The AEN T100 is a CHP with a peak power 100kWe and 150 kWth

• It operates at 70000rpm with a TIT of 950°C

• Peak efficiency of 30%

• Fed by natural gas

EMGTF - November 2018 - Madrid (ES) 
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Field Data Analysis
• Measured data were used to create a distribution surface of electric power in function of ambient temperature and pressure 

EMGTF - November 2018 - Madrid (ES) 
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Field Data Analysis
• Correcting all the performance for the actual pressure, the following diagram shows the impact of ambient temperature only

• In the data of ambient temperature there is a deviation in power (5 kW) which must be further investigated

(the variation is not linked to ambient pressure)

EMGTF - November 2018 - Madrid (ES) 
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Comparison against reference
Avarage plant data at 100% load were compared against the correction curves proposed in the aforementioned works

2 – Caresana F., Pelagalli L., Comodi G., Renzi M., 2014, “Microturbogas cogeneration 
systems for distributed generation: effects of ambient temperature on global performance 
and components”, Applied Energy, vol. 124, pp. 17-27

1 – Ferrari M.L., Traverso A., Massardo A.F., 2016, “Smart polygeneration grids: 
experimental performance curves of different prime movers”, Applied Energy, vol. 162, pp 
622-630

EMGTF - November 2018 - Madrid (ES) 
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Comparison against reference

• Thermal Power: Correction 1 overestimates the increase in thermal
power

• Thermal Power: Correction 2 presents a negative trend, contradicted
by field data 

Avarage plant data at 100% load were compared against the correction curves proposed in the aforementioned work

Correction 1 Correction 2
Pth +1.19% -0.10%

2 – Caresana F., Pelagalli L., Comodi G., Renzi M., 2014, “Microturbogas cogeneration 
systems for distributed generation: effects of ambient temperature on global performance 
and components”, Applied Energy, vol. 124, pp. 17-27

1 – Ferrari M.L., Traverso A., Massardo A.F., 2016, “Smart polygeneration grids: 
experimental performance curves of different prime movers”, Applied Energy, vol. 162, pp 
622-630
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Objectives

• Ambient condition impact on microturbine performance

• Performance of mGT versus ICE at part load

• Ambient condition impact on mGT fuel cell hybrid systems

• Hints on innovative micro-turbomachinery for energy harvesting

EMGTF - November 2018 - Madrid (ES) 
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• The investigated engine is a Turbec T100 from 2008 installed outdoor within the FP7 
EU Project «Energy Hub»

• It is included in a framework emulating a polygenerative microgrid, together with an 
internal combustion engine, a biomass boiler, solar panels, thermal storage

• The whole package was used to test and validate different control logics for energy
management within a smart grid environment

• The engine has been used also to produce energy for the University campus smart
grid

• The engine underwent over years several startups and quick transients due to control 
robustness tests

• The engine run basically during autumn, winter, spring and barely during summer

• Currently is under maintenance and updated for the new PUMP-HEAT test-rig

EMGTF - November 2018 - Madrid (ES) 

Nominal efficiency 30%

Nominal peak power 100kWe

Comparison: mGT against ICE
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Within the IES lab, the previous T100 machine has been compared against an ICE, 

at off-design conditions. 

In this case, ambient temperature has not been varied.

EMGTF - November 2018 - Madrid (ES) 

Tandem T20 

(Cogenerative Internal Combustion Engine)

• Electrical Power  20 kWe

• Thermal Power 47 kWt (oil, water, exhausts)

• Non-condensing unit

The off-design behaviour of electrical efficiency shows a very similar behaviour for both engines.

The thermal power available remains higher for  the mGT, at part load.

Comparison: mGT against ICE
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mGT fuel cell hybrid systems
TPG is studying an innovative plant layout for small scale (30kWe) fuel cell gas turbine hybrid systems, integrating a turbocharger.

The Solid Oxide Fuel Cell (SOFC) stack is meant to be operated at high temperature (800°C) and at pressure (3-4bar).

EMGTF - November 2018 - Madrid (ES) 



University of Genoa

19

mGT fuel cell hybrid systems

EMGTF - November 2018 - Madrid (ES) 

System operational constraints
• SOFC maximum T = 860°C
• SOFC T gradients ≤ 250°C
• SOFC p gradients ≤ 20 mbar
• REC inlet temperature (TOT) ≤ 650°C
• Surge margin > 1.1
• Rotational speed < 300 krpm

Control strategies
• Cold Bypass (+Bleed)
• Wastegate (+Cold Bypass)
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mGT fuel cell hybrid systems

Results show a clear positive impact of both part-load operation and hot ambient temperatures: 

this is a complete change of paradigma from conventional thermal power plants!

EMGTF - November 2018 - Madrid (ES) 

Off-design analysis at different load and ambient temperature conditions

Tamb
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Conclusions
• An experimental analysis on field data acquired on a T100 microturbine has been compared against literature 

data

• The focus was placed on the ambient conditions impact on the mGT performance. Measurements tell:

• The electrical power is reduced by 0.83 kW/°C per each 1°C growth from 15°C

• The thermal power is increased by 0.5 kW/°C per each 1°C growth from 15°C

• The efficiency is reduced by 0.31%/°C per each 1°C growth from 15°C

• A comparison of a mGT with an ICE of similar size showed the superior mGT thermal performance at off-
design; electrical performance at part-load was comparable.

• A fuel cell micro gas turbine system shows a completely different behaviour:

- at part load, efficiency is increased, thanks to the fuel cell internal characteristic

- at higher ambient temperature, efficiency and power can be increased (if allowed by the hardware)

EMGTF - November 2018 - Madrid (ES) 
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Hints for thoughts: innovative micro wind

EMGTF - November 2018 - Madrid (ES) 

Ducted mini-wind can find application in
- integration in infrastructures
- integration in buildings

Ducted mini-wind technology can augment the rotor power by a factor up to 3, compared to the open space configuration.

Ducted mini-wind prototype for wind-tunnel testing at University of Genoa

kW scale demonstration, Genoa harbour
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Hints for thoughts: Tesla expanders

100W scale Tesla rotor – University of Genoa 

Boundary layer turbine (or bladeless) has been patented by N. Tesla in 1913. 

Distinct features: friction is necessary to exchange work, simple manufacturing, limited impact of scale on performance, low noise.

Disadvantages: low efficiency, rotor balancing. 

Prototype rotor and turbulence in the rotor gap
Tesla turbine schematic

Promising technology to be re-discovered for: 
• Micro-harvesters (W scale)
• Dense fluids 
• Bi-phase expansions 
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SUPEHR conference 

http://www.tpg.unige.it/TPG/SUPEHR19/

ABSTRACT DUE 
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FINAL PAPER DUE
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