
Startup time reduction for Combined Cycle Power Plants

8th International Gas Turbine Conference Pascal Decoussemaeker October 12, 2016

Imagination at work

GE Proprietary Information—Class III (Confidential) Export Controlled—U.S. Government approval is required prior to export from the U.S., re-export from a third country, or release to a foreign national wherever located.

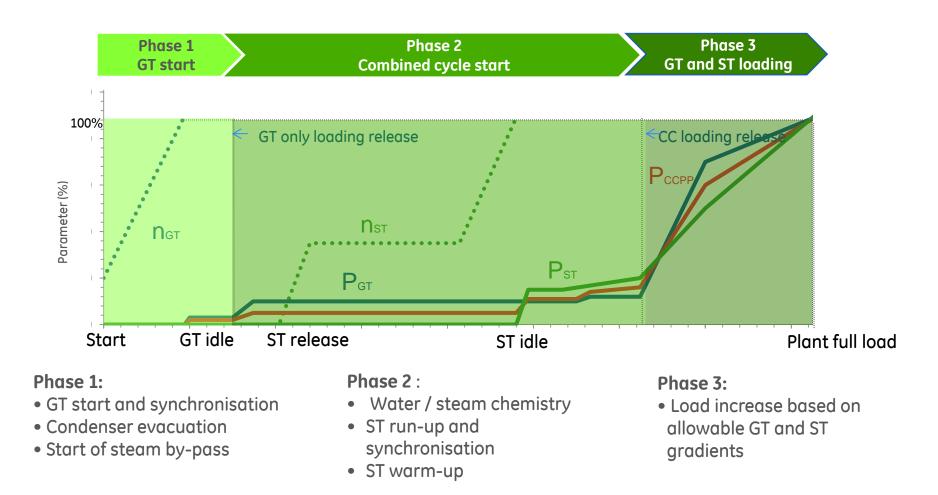
We are better together: Our History

STARTUP TIME REDUCTION

Operational flexibility

Increasing share of renewables leads to increased grid volatility

Fast back up can be achieved by Combined Cycle Power Plants:


- Non-spinning reserve: requires fast and/or more frequent start-ups
- Spinning reserve: operation on low part load to increase available load range

Typical cold start sequence

Warm and hot start duration

Sample of approximate time (in minutes)	Phase 1	Phase 2	Phase 3
Cold	20-25	80	45
Warm	20-25	50	45
Hot	15-20	10	20-25

Warm starts:

 Phase 2 time is reduced because it is possible to warm-up the ST more quickly

Hot starts:

- Phase 2 almost completely eliminated because ST is still hot
- ST loading can be done with higher gradient

On which phase should be the main focus?

Depends on "type of start" that is most important for the expected operation profile:

- Cold start: phase 2
- Warm start: phase 2 and 3
- Hot start: phase 1 and 3

"Keeping warm" of HRSG and ST allows to move from one category in the next

Phase 1: GT startup

Improvement potential during GT startup phase (phase 1)

Reduce time to GT start release:

- Maintain HRSG level (and pressure):
 - Keep HRSG warm
 - N2 capping
- Pre-sequencer

Purge credit

Improve condenser evacuation:

- Auxiliary steam to keep HRSG warm and to draw vacuum
- Vacuum ring pump

Keep HRSG warm

Short term:

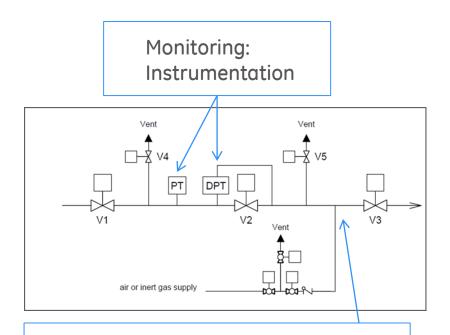
- Stack damper
- Improve cold end insulation
- Reduce water losses

Longer term:

• Sparging steam in evaporator

Benefits:

- Reduces time to make steam available
- Reduces life consumption of pressure parts
- Less deposit loading


Purge credit (NFPA85)

Purge before light-off of GT:

- At least five volume changes
- Not less than 5 minutes

Purge during GT run-down (accepted since 2011):

- Normal engine run down
- Credit if unit can be kept in purged condition between restarts
- Solution for gaseous fuels: Triple block and bleed with pressurized pipe section

Section between block valves V2 and V3 is pressurized with air / inert gas at standstill

Time saving: 5 – 10 minutes Preservation of energy and reduction of HRSG stress

Phase 2: Combined cycle startup

Improvement potential during CCPP start-up phase (phase 2)

Pre-warming the steam turbine Plant startup sequencer optimisation Don't wait for steam turbine warm up:

 Uncoupling water/steam cycle from gas cycle

Reduce waiting time for steam quality:

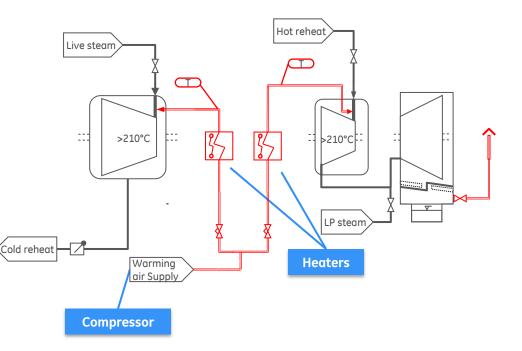
- Preservation to corrosion product loading:
 - Maintain pressure in HRSG:
 - Keep warm or nitrogen capping
 - Chemistry
- Improved sampling:
 - Degassed conductivity
 - Upgrade of sampling system

Uncoupling steam turbine from gas cycle

Loading of the GT to a high load without waiting time for the steam cycle

Steam temperature control:

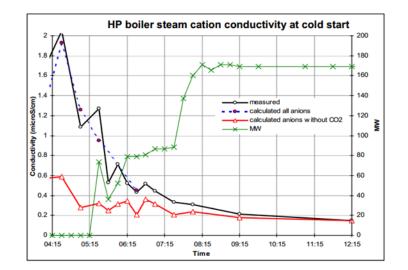
- GT inlet guide vane schedule
- Uprated or additional desuperheater
 - Economizer bypass
- Ambient air injection
 - Reduces life consumption of pressure parts and gas path components of HRSG


Power optimized startup to support the capacity market

Keep steam turbine warm

- Improve the startup in cold condition by actively keeping ST in warm condition
- Reduce lifetime consumption
- Preserve ST during standstill
- Maximum benefit for cold starts

Steam turbine pre-heating



Improved chemical sampling

Degassed conductivity measurement

Sampling arrangement for cycling:

- Remote on/off: switch off during stand still to maintain heat and water level
- Remote sample line flushing
- Automatic pressure and flow regulation for different steam conditions

Phase 3: Combined cycle loading

Improvement potential during CCPP loading phase (phase 3)

Increase GT loading gradient:

• HRSG life study, trade off between life and economic opportunity

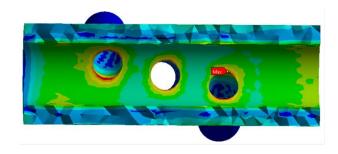
Pre-warming:

• ST

For increased gradient

• HRSG

For reduced life consumption


HRSG remaining life assessment

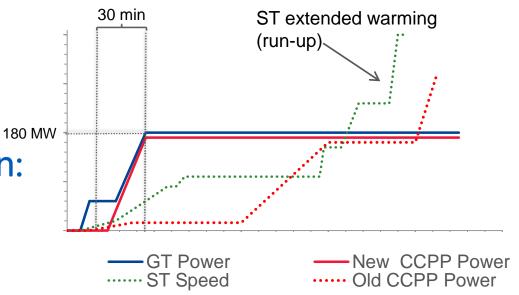
Different levels of detail:

- Level 1: basic life assessment
 - Calculation of creep & fatigue in accordance with boiler design code
 - Corrosion risk assessment
- Level 2: on-site assessment
 - Inspection and condition assessment
- Level 3: finite element analysis
 - More detailed review for critical components

Component	Fatigue	Creep	Total
component	Damage	Damage	Damage
HPSH1 Outlet manifold	0.477	0.051	0.529
HPSH1 tube-to-header connection	0.022	0.160	0.181
HPSH3 to HPSH2 links (bends)	0.010	0.028	0.038
HPSH3 lower tube-to-header connection	0.132	0.080	0.211
HP Drum - ID/crotch of large penetrations	0.298	0.000	0.298
FWHTR3 tube-to-header connection	0.009	0.000	0.009

Typical output of level 1 assessment

Case studies


Case study: KA26-1 in Europe

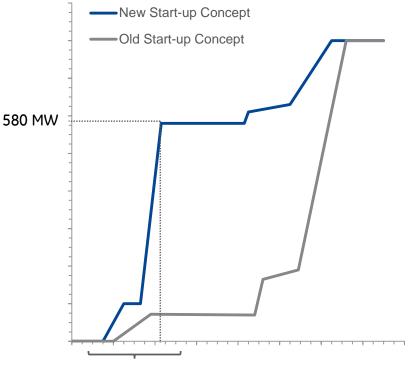
Requirement:

 Dispatch from any condition (cold/warm/hot) to 180 MW within 30 minutes

Elements of GE solution:

- Start and load GT with ST on by-pass
- ST is started later:
 - GT Exhaust temperature optimization
 - New HP/IP desuperheaters setpoints
 - Steam turbine warm-up logic

180 MW in 30 minutes (1x GT only, cold start, ST to follow)


Case study: KA26-2 in Europe

Requirement:

 Short notice dispatch from any condition (cold/warm/hot) to full GT load within 45 minutes (tertiary reserve

Elements of GE solution:

- Purge credit
- Fast condenser evacuation
- New GT and ST start operation concept
- Increased GT and ST loading gradients

43 mins

580 MW in 43 minutes (2x GT only, cold start, ST to follow)

Case study: Installation of HPRH line oOEM units in Italy

Requirement:

 The market in Italy requires all CCPP to be flexible and reduce the start-up time below 1 hr

Elements of GE solution:

- Modelling and design of new warm-up line
- Noise study
- INAIL certificate (local authorization body)
- Structural verification
- Installation and commissioning

After the installation, the HRH line heating time was reduced from 2.5 hours to 0.5 hours

New warm-up lines

Detail of RH steam vent

Summary

	Phase 1	Phase 2	Phase 3
Keep HRSG warm	Х	Х	
Keep HRSG and ST warm		Х	Х
Purge credit	Х		
Uncouple Gas and Steam cycle: - VIGV - Desuperheater - Ambient air injection		×	X
Improved sampling		X	
HRSG life assessment and GT and/or ST gradient increase			Х
Dispatch and startup optimization on-line tools			X

