

Liquid Feedstock Plasma Spraying - an Emerging Process for Advanced Thermal Barrier Coatings

N. Markocsan, M. Gupta, S. Joshi, P. Nylén – Univ. West, Trollhättan, Sweden

Xin-Hai Li - Siemens Industrial Turbomachinery, Finspång, Sweden

Jan Wigren - GKN Aerospace, Trollhättan, Sweden

Outline

- Introduction
- Thermal Barrier Coatings (TBCs)
- Liquid Feedstock Plasma Spraying Suspension Plasma Spraying (SPS)
- Functional Performances of SPS TBCs
- Conclusions

We live in a world with continuously increasing energy demands

World electricity generation and related CO₂ emissions

Further improvements and optimisation of the current power sources is still needed

Gas Turbines

- a \$ 42 billion industry worldwide (2010)

SGT-800, Courtesy Siemens Industrial Turbomachinery, Finspång Sweden

RM-12 engine, Courtesy: GKN Trollhättan, Sweden

Gas Turbine Efficiency

- 1% increase in engine efficiency of a power plant of 300 MW would result in savings of:
 - more than \$ 2 M/year fuel costs
 - approx. 25 000 t/year reductions in CO₂

6,5€/GJ fuel cost, 8000 h/a

Ref: M. Oechsner, Siemens, TBC Systems for Gas Turbine Applications – Status and Future Challenges, Turbine Forum, Nice, April 25, 2012

Objective: Improve engine efficiency

- Increase the operating temperature
 - A. Lower thermal conductivity TBCs => Design of coating microstructure
 - B. Multilayered systems with new materials
- Better durability of TBCs
 Protection against harsh environment

TBCs effect on combustion temperature

Thermal barrier coatings (TBCs) are applied to metallic surfaces used in gas turbine to insulate them from heat loads

 Improvement of GT efficiency by increase of combustion temperature

$$\eta_{real} < \eta_{Carnot} \le 1 - \frac{T_{inlet}}{T_{outlet}}$$

 Protection of metallic base materials of internally cooled parts with TBC

$$j_{Q} = -\lambda \frac{\Delta T}{\Delta x} \qquad \begin{array}{c} \Delta T:\\ \Delta x:\\ \lambda:t \end{array}$$

 $\label{eq:lambda} \begin{array}{l} \Delta \text{T: temperature drom} \\ \Delta \text{x: TBC thickn} \\ \lambda : \text{thermal col} \end{array}$

What is a TBC?

Components which need thermal insulation include: combustor, turbine blades & vanes, afterburner etc.

The temperature drop depends on several factors such as microstructure, porosity content, top coat composition etc.

Liquid feedstock processes

Solution Precursor Plasma Spraying (SPPS)

Suspension Plasma Spraying (SPS)

Why Suspension Plasma Spraying?

Coating Build up: Solid Powder

Conventional Thermal Spray

Coating Build-up: Liquid feedstock

Smaller particles tend to follow plasma gas stream

Sokolowski, JTST, 25(1-2), 2016

Coating Build up

Particle trajectory results in column-like structures

Microstructure influenced by surface topography?

Columnar coatings – cheaper alternative to EB-PVD!!

K. VanEvery *et al*, *J.Thermal Spray Tech*, 20(4), p. 817-28, (2011)

N x300 300 um

A. TBCs with new microstructure

GKN AEROSPACE

Axial - Suspension Plasma Spraying (SPS)

- Robust process with large process window
- No overspray
- High deposition efficiency

Great potential for better TBCs

2015-01-28 NL D4,9 x10k 10 um

100 um

Influence of bond coat roughness on column density

Substrate specimen: Hastalloy X,

Bond coat: AMDRY 386, sprayed by APS, F4 gun,

Topcoat: 8YSZ suspension, 10wt.% solid load, sprayed with Mettech Axial III gun

Thermal Conductivity

Thermal conductivity measurement were done using the Laser Flash Method

N. Curry, Z. Tang, N. Markocsan, P. Nylen, Surf. Coat. Technol., 268, 2015, p. 15-23

Thermal Shock Results

Burner Rig Test

Heating: Oxy-fuel flame Temperature (front): 1200 – 1300°C Temperature (back): ~1000 °C Heating time: 75s

Cooling: Heated Pressurised Air Cooling temperature: ~ 450 °C Cooling time: 75s

Failure Criteria: >10% surface spallation

Erosion resistance of 8YSZ sprayed by different methods

Erosion test was conducted at room temperature according to GE standard E50TF121

N. Curry, K. VanEvery, T. Snyder N. Markocsan, *Coatings* 2014, 4, 630-650; doi:10.3390/coatings4030630

B. Multilayered systems with new materials

- Higher operating temperature (>1200°C) poses several challenges
 - State of the art topcoat TBC material YSZ has limitations above 1200°C such as
 - Poor phase stability
 - Poor sintering resistance
 - Susceptibility to CMAS attack
- Need for new ceramic materials which can overcome these drawbacks

Iceland Volcano

New TBC material – Gadolinium Zirconate

Why Gadolinium Zirconate?

- Lower thermal conductivity
- Excellent phase stability
- CMAS attack resistance

Why Double layer GZ/YSZ?

- GZ has a lower fracture toughness than standard 8YSZ
- GZ reacts with alumina (TGO), leading to formation of GdAIO3
- Therefore, GZ/YSZ double layered TBCs are widely investigated

Vassen et al. 'Overview on advanced thermal barrier coatings' Surf. Coat technol, Vol. 205, 2010

Multilayered TBCs

S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén, Surface and Coatings Technology, Vol. 283, 2015, pp. 329-336

Lifetime & failure modes

TCF test with 1hr heating and 10 min

TCF failed single layer YSZ a) SEM micrograph b) Photograph

TCF failed double layer GZ/YSZ a) SEM micrograph b) Photograph

TCF failed triple layer GZdense/GZ/YSZ a) SEM micrograph b) Photograph

Erosion resistance of multilayered TBCs

S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén, R. vassen: Proceeding of the ITSC Conf. Shanghai 2016, DVS324, pp. 343-347

Conclusions

- Thermal Barrier Coatings can still bring improvements engine efficiency of GT
 - New materials
 - New deposition processes
 - Multi-layered TBCs
- Liquid feedstock plasma spraying a promising method for next generation TBCs
 - Cheap, easy to scale-up method
 - Coatings with improved functional performances

Acknowledgements

- Funding
 - KK-foundation
 - Västra Götalandsregionen (VGR)
- PhD students
 - Ashish Ganvir
 - Satyapal Mahade
- Engineers
 - Stefan Björklund
 - Jonas Olsson
 - Kenneth Andersson

Thank you for your attention!

E-mail: nicolaie.markocsan@hv.se

