Increasing competitiveness of CCGT plants in a dynamic market: An owner's approach

Dr. Artur Ulbrich, Andy Jones, Christian Schäferkordt, Stuart Simpson

8th International Gas Turbine Conference, Brussels – 12-13 October 2016

Content

- Background & Motivation
- Increasing operational flexibility
 - Decreasing minimum-load of a CCGT with GE GT26
 - Decreasing minimum-load of a CCGT with Siemens 4000F
 - Faster start-up of CCGTs with GE 9 FA
 - Increasing part-load efficiency in a CCGT with Siemens V64.3
- Summary

We are Uniper

Hydroelectric plants 4.25GW

Trading

Energy sales (small to large customers, electricity & gas)

Services

Regasification

Background: Changed market conditions

- Maintenance regimes have moved from hours-based toward startsbased
- This is largely due to commodity prices, demand and renewables growth
- Start cost is key for driving value in markets with low power prices and spreads

CCPP Grain – Main plant data

min. load CCGT with GT26

Units	EOH	ОН	Starts			
61, 71,81	~ 50,000	~30,000	~ 1,250			
Basic Plant Data						
GT Type & Configuration		3 x GT26	single shaft			
Combustion		sequentia	l lean-premix	x		
HRSG		Drum type, Triple Pressure Reheat				
ST		Alstom STF15c				
Generator		Alstom TOPGAS, hydrogen cooled				
COD		June 2011				
Capacity, CC		425 MWe (3x)				
Pmin original		230 MWe				

Modifications made and result

min. load CCGT with GT26

Switching off SEV burners individually

- Hardware modifications to the GT
 - Installation of 24 new shut-off valves in SEV fuel distribution system

Images courtesy of GE

- Software modifications of the logic were required covering the GT and BoP
- A review of Risk Assessments and a HAZID/HAZOP led by Uniper Technologies to assess the new risks to GT, HRSG and BoP was completed
- A Unit trial was completed on Grain Unit 6 to enable the assessment of:
 - Performance testing including confirmation of environmental performance at LPL
 - Operation of HRSG and BoP in various conditions
 - GB Grid Code testing

\Rightarrow Emission compliant load could be reduced from 230 MW to 115 MW uniper

Operating experience at Grain

- Early operating experience at Grain has been positive.
- Since installation in autumn 2015, Unit 6 has spent prolonged periods operating in LPL
- The overnight shutdown has generally not been eliminated from Grain Unit 6 operating regime.
- Defects associated with the "Mercedes" strut which supports the hot end bearing.
- Modifications implemented to prevent overheating of the jacking oil system.
- The full impact of the uneven temperature profile on the LPT has still to be assessed and will continue to be monitored.

CCPP Gönyű – Main plant data

min. load CCGT with 4000F

Unit	EOH	ОН	Starts	- and the	- Marill	BAN
1	26,468	16,826	765			E
as of 01 st /	April 2016					
Basic Plant Data						
GT Ty Config	/pe & guration	1 x SGT5-4000F(6), single shaft				
Comb	oustion	Premix pi	ot, Dual Fuel			
HRSG	3	STF, Trip	IP Bens	son) + R	eheat	
ST		Siemens SST5-5000, HP/I			_P	
Gene	rator	Siemens	SGen5-3000V	V		
COD		May 2011				
Capad	city, CC	429 MWe				
Pmin o	original	250 MWe				

Part Load upgrade scope

- Implementation of CO Reduction (COR) package
 - Additional pressure measurements at compressor extractions
 - Activation of Air Pre-Heater (APH) during part load
 - OTC part load increase
- Installation of about 50 additional thermocouples at various HP evaporator harps. All TC's are permanently connected to DCS
 - \rightarrow Early detection of instabilities
 - → Ability to approach real HRSG load limit and to verify effectiveness of counter-measures

Expectations of COR Package

- Reduction of Minimum Environmental Load (site CO limit: 100mg/Nm3); Siemens expected value was ~196MW CC load
- Increase of part load efficiency during a certain load range
- HRSG instabilities expected at low loads. Siemens advised to
 - increase HP system pressure to 95 bar (from 75bar)
 - increase blow-down rate in order to increase the mass flow
 - install additional orifices between HP Evap 1 and 2

Owner's verification by dynamic modelling

• Uniper in-house engineering company Uniper Technologies (UTG) created steady-state and dynamic HRSG models to verify Siemens statements

→ Siemens predictions verified but at even lower loads plus

→ Confidence given that no HRSG hardware modification is required

Results

- CO compliant minimum load could be reduced to 165MW (net)
- HRSG generally stable during tests, only at lowest test load some instabilities could be observed, mitigated by increasing HP system pressure

- COR package can be beneficial to improve a plants situation
- HRSG and BoP influences are better to be checked as well independently

CCPP Connah's Quay – Main plant data

Unit	EOH	ОН	Starts
1-4	~125,000*	~107,000*	~1,500*

4 x GE 9 FA, DLN 2.6+,

Natural Gas

*varies by Unit, figures for Unit 3 June 2015

Basic Plant Data

GT Type &

Configuration

Combustion

Combastion		Tower Chinis Around the World
HRSG	Stein, vertical Triple Pressure +	Reheat
ST	Alstom	
Generator	Alstom Type T255-420 three pha	ase
COD	Mar 1996	
Capacity, CC	4 x 355 MWe	

Uniper/GE partnership overview

Multi-year agreement initiated December 2011 for joint development of more flexible CCGT operation

GE scope:

- -Develop and conduct test program;
- Develop, validate, and implement new GT control software

Uniper scope:

- Conduct combined cycle plant modeling
- Analyses to evaluate operational impacts of new technology
- Develop risk mitigation measures;
- Make plants available for field testing;
- Implement necessary plant control software changes
- ⇒ Partnership approach results in better overall plant-level solution by engaging end-user throughout product development process

Fast start up VLP on GE 9FA

CC and SC startup curves

→ Conventional combined cycle plant starts too slow and costly to compete in realtime power markets ... cost, time to dispatch, and load profile

⇒ Need near-simple cycle load profile ... while controlling exhaust temperature to manage plant stress uniper

What is **OpFlex* VLP?**

VLP operating space

Conventional operating "path"

- Gas turbine control feature
- Allows independent control of load and exhaust temperature within the gas turbine boundaries ... true GT flexibility product
- Simple interfaces for integrating into existing plant operation
- Requires OpFlex AutoTune to manage combustor operability

Plant operating benefits with VLP

Startup comparison – steam temperature matching (TM) & ramping

 exhaust flow/energy
GT pressure ratio
combustion temperature
temperature load flexibility accelerate boiler and ST startup near base load GT heat rate CO emissions compliance at lower exhaust

reduced load imbalance

Example: 450°C exhaust temperature

- ~130 MW increase
- ~40% increase in exhaust flow
- ~60% reduction in heat rate

Comparison of conventional versus VLP combined cycle start-up curves (predicted)

With VLP:

- Near simple cycle load profile ... higher load sooner
- Near simple cycle full load heat rate

uni per

With VLP:

- Exhaust temperature still controlled to limit equipment stress
- Reduce maximum exhaust temperature during start

Results

Combined cycle plant delivered near simple cycle start capability:

- More MW
- Less time
- Less fuel

UNI Per

Increase of part load efficiency

Situation

• CCGT Plant Kirchmöser with V64.3, COD 1994

Challenge

- Like most CCGT plants, the design is optimized for base load
- Plant rarely operates in base load as the power demand is determined by the rail network.

Solution

- Creation of HRSG and thermodynamic plant models, investigate possible operational and plant modifications to improve part load efficiency.
- Evaluate proposed modifications in terms of NPV and plant risk.

Value

70

second GT at part load

80

both GT's at part load

10

20

30

40

50

PGUD [%]

60

55

50

Neup [%]

- Improvement of about 1.0% point on part load efficiency.
- => NPV of about 1 Million €

Conclusion

- Uniper / OEM partnership delivered successful product enabling higher CCGT flexibility, e.g.
 - Low Part Load for GT 26 plant
 - Low Part Load for 4000F plant
 - Fast start up with VLP for 9FA
- Significant effort required to manage plant impacts and engineer implementations on site ... partnership approach a best practice
- OEMs have valuable solutions for improving flexibility, but: They should be challenged
- Using our Owner's technical capabilities has led to considerable improvement of our CCGT assets

Thank you!

Questions?

