Shell SmartConnect
Improving Reliability and Production in Shell Oil & Gas Facilities

International Gas Turbine Conference 2016
Brussels, Belgium

Gert Hoefakker
Team Lead Shell SmartConnect
Definitions & Cautionary Note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: Our use of the term ‘resources plays’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2014 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 12-13 October, 2016. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
Agenda

- What is SmartConnect?
- Why did Shell develop its own toolkit?
- Levels of “smartness”
- Application on gas turbines
- Future growth
Introduction
Introduction

- Gert Hoefakker, Team lead Shell SmartConnect
- 26 years in Condition & Performance Monitoring
- 17 years with Brüel & Kjær Vibro
- 9 years with Shell
What is SmartConnect
What is SmartConnect

- What it is: An integrated, enterprise-wide surveillance and condition monitoring system

- What it does: Leverages existing data and turns it into actionable information
 Predicts and avoids failures through real-time decision support and getting more performance from existing operations
 Integrates reliability data to forecast future plant performance (for existing assets and future projects)
 Integrates other vendor systems to deliver a single analysis of the data through one web portal
 Uses existing instrumentation, control systems, vibration monitoring hardware, data historians and follows global Shell IT standards

- Where it’s used: Approximately 6000 rotating pieces of equipment covered to date.
 Deployed in Downstream, Upstream, LNG/XTL and piloting on Tanker fleet
 Developments ongoing for non Rotating Equipment
Global presence

Total rotating equipment deployed > 6000
Why did Shell develop its own toolkit?
The need for a new approach

High-technology monitoring systems have been around for years...why do failures still occur?

Traditional systems focus on the damage and are often:

- Overcomplicated and badly embedded in IT infrastructure with poorly understood limitations (Data security and network issues)
- Designed by diagnostic (i.e. vibration) specialists, not facility operators
- Looking for damage, rather than seeking to prevent failure
- Lacking ownership
Remote monitoring & diagnostics target

- Early Detection of Incipient Failure
- Traditional target of Condition Monitoring
- Failure – potentially "catastrophic" or consequential damage

Operating Window
Management of all equipment!

Manage Equipment condition till intervention

Extra Reliability

Minimum Acceptable Condition

Copyright of Shell Global Solutions International B.V.

October 2016
Levels of "smartness"

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| Level 0 | No Equipment Information
Ignorance is Costly! |
| Level 1 | Run Status, % Utilization & Reliability tracking
Know Your Downtime Dollars! |
| Level 2 | Actual vs. Potential Performance
Improve Your Performance – Maximize Output! |
| Level 3 | Know The Mechanical Health of Your Equipment
Optimize Your Maintenance Intervals! |
| Level 4 | Understand Your Equipments Dynamic Behaviour
Enhanced Mechanical Knowledge! |
| Level 5 | Understand Your Equipment Historic Performance
Achieve and Sustain Top Quartile Performance! |
Level 1: Run status

L1-Run Status

<table>
<thead>
<tr>
<th>Service</th>
<th>Uptime %</th>
<th>Hours</th>
<th>Train</th>
<th>Uptime %</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Centrifugal Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCW2 Circulation Pumps</td>
<td>97.8%</td>
<td>269.9</td>
<td>P-45001A Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45001B Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45001C Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45001D Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td>CCW3 Circulation Pumps</td>
<td>0.0%</td>
<td>0.0</td>
<td>P-45002A Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45002B Train</td>
<td>0.0%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45002C Train</td>
<td>38.8%</td>
<td>288.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-45002D Train</td>
<td>36.1%</td>
<td>268.2</td>
</tr>
</tbody>
</table>
Level 2: Performance monitoring
Level 3: Health monitoring
Level 4: Diagnostics
Level 5: Statistics and Assessments
Application on gas turbines
Gas turbine performance
Gas turbine performance
Gas turbine OEM interfaces in SmartConnect
Future growth
Wear is not the dominant cause of failure

Equipment does not die: it is killed...

Many failures are caused by operating window violations, operational issues and auxiliaries, including those involving:

- fuel quality
- combustion air quality
- Lubrication
- control mismatches
- off-design operation
- contamination (solids)
- seal failures
- liquid carry-over and fouling
- surge control
- valve problems

Non core Rotating Equipment Engineer issues, requires multi-disciplinary approach to solve
Air cooled heat exchanger
Pressure Vessels
Questions and Answers