IMPACT OF ENGINE OPERATION ON GAS TURBINE COMPONENT DURABILITY USING DUCTILITY EXHAUSTION

THE FUTURE OF GAS TURBINE TECHNOLOGY
8TH INTERNATIONAL GAS TURBINE CONFERENCE
12-13 OCTOBER 2016, BRUSSELS, BELGIUM

Dr. Richard Green, Solar Turbines Inc.
Dr. Jonathan Douglas, Frazer-Nash Consultancy

A CULTURE OF CUSTOMER CARE

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROPRIETARY AND CONFIDENTIAL TO SOLAR TURBINES INCORPORATED, AND MAY NOT BE REPRODUCED, USED, TRANSMITTED OR OTHERWISE DISCLOSED WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF SOLAR TURBINES INCORPORATED.
CONTENTS

• Introduction
• Ductility Exhaustion and Superalloys
• Operational Stresses in Gas Turbine Components
• The Interaction Between Creep and Fatigue
• Application to Gas Turbine Operation
• Implications for Asset Management
INTRODUCTION

• Reliable operation of gas turbines is key to our customers needs

• Reliability covers a range of potential issues, however material degradation from creep and fatigue presents the most serious of risk

• Industrial gas turbines experience both cyclic loading (variability in operation) and constant loading (extended periods of operation) which leads to both fatigue and creep damage

• The interaction between creep and fatigue can lead to additional damage, which should be considered

• Operational flexibility is important to customers, it is imperative that we understand these interactions in more detail in order to provide better tools for asset management
• What is ductility?
 – Total available strain including plasticity and creep

 – Differences in failure mode occur due to loading rate
DUCTILITY EXHAUSTION AND SUPERALLOYS

• Ductility is Strain Rate Dependent
 − At high strain rates, damage is driven by dislocations
 − At low strain rates, damage is driven by diffusion

![Diagram showing rate dependent ductility](image)
DUCTILITY EXHAUSTION AND SUPERALLOYS

• Ductility Behavior
 – At high strain rates, ductility is high
 – At low strain rates, ductility is low
DUCTILITY EXHAUSTION AND SUPERALLOYS

• Rate Dependent Ductility in Superalloys
 - Comparing ductility between a typical Superalloy and 316H stainless steel, shows the Superalloy has a higher ductility at lower strain rates, resulting in improved creep resistant
 - This introduces challenges for testing, as lower rate tests tend to require significantly more time

• Using Ductility to Calculate Damage
 - Hot section component experience a range of loads
 • Transient loads during start up and shutdown
 • Constant loads during extended periods of operation
 - The stress-strain response to the load cycle can be used to find the varying strain rates

\[
\frac{\Delta \varepsilon}{\Delta t} = \dot{\varepsilon}
\]
DUCTILITY EXHAUSTION AND SUPERALLOYS

• Using Ductility to Calculate Damage

 - Strain rate can be used to find the available ductility at that rate

 - Damage can then be determined from the incremental strain and the available ductility

\[
\lambda = \int_0^t \frac{\dot{\varepsilon}}{\varepsilon_f(\varepsilon, T)} dt
\]
OPERATIONAL STRESSES IN GAS TURBINE COMPONENTS

- Hot section components experience two principal load conditions
 - Mechanical loads; resulting in primary stresses (σ_p)
 - Thermal loads; resulting in secondary stresses (σ_s)

- Rotating components, such as disks, are typically dominated by primary stress (speed)

- Static components, such as nozzles, are typically dominated by secondary stresses (temperature)
OPERATIONAL STRESSES IN GAS TURBINE COMPONENTS

- Primary stresses (σ_p) give rise to forward creep
 - Increasing strain under constant load

- Secondary stresses (σ_s) give rise to stress relaxation
 - Also due to creep, but at constant displacement

- Both primary and secondary stresses can give rise to plasticity, resulting in redistribution of stress and strain
THE INTERACTION BETWEEN CREEP AND FATIGUE

- It is the combination of both primary and secondary stresses which leads to interactions between creep and fatigue.

- The potential for interaction is driven by redistribution and relaxation as the peak stresses shakedown.

- The interaction can cause perturbations in stress which can lead to increased damage.
THE INTERACTION BETWEEN CREEP AND FATIGUE

• Interaction occurs when creep is perturbed by a cyclic load

• Relaxation and redistribution occur during dwells in the load cycle, resulting in a stress drop

• At the end of the dwell, the stress unloads resulting in a stress which now exceeds yield at the end of the cycle

• There is insufficient energy to cause plasticity at both ends of the cycle, therefore, the stress is “pinned” at yield

• Upon reloading, the elastic stress range is applied perturbing the peak stress leading to further relaxation and damage
APPLICATION TO GAS TURBINE OPERATION

• This Interaction can also occur between different load cycles

• Variation in both the elastic stress ranges and stresses at the start and end of the cycle, can lead to perturbations

• This exaggerates the non linear accumulation of damage over the operation period
SUMMARY

• An approach has been presented which can predict damage from creep and fatigue interaction using ductility exhaustion.

• Superalloys exhibit rate dependent ductility, which supports a ductility exhaustion approach.

• Interaction between creep and fatigue damage mechanisms can lead to additional damage.

• Damage accumulation from creep and fatigue is non-linear and path dependent.
IMPLICATIONS FOR ASSET MANAGEMENT

• Our common goal is to maximize reliability, availability and operational flexibility

• The continued development of technology is key to achieving this goal

• To support this we must achieve data driven Equipment Heath Management

• Equipment Health Management is no longer just about hours and cycles, its about real time damage modeling
Thank you