EPA FILTRATION OFFSHORE

Impact of EPA Filtration Air Intake Filtration on Gas Turbines Operating in Middle East Offshore Applications and Fueled with Sour Gas.

D. ORHON (TOTAL S.A)
J. VAN DER KAAG (TOTAL ABK)
S. TAYLOR (AAF)
FIELD INTRODUCTION

J.VAN DER KAAG
FIELD INTRODUCTION AND OPERATIONAL PARAMETERS

Total Abu Al Bukhoosh (TABK) field is located offshore Abu Dhabi (UAE), in shallow waters of the Persian Gulf. The field was discovered in late sixties and developed till production started in early seventies. Total is for more than 40 years operator for the oil production and operates the gas production on behalf of the UAE government.

The offshore complex installed gas turbines differs in 3 types, 3 manufacturer and ensure critical functions for gas compression and power generation. The following units are installed:

• 3 x 10Mw heavy duty Gas Turbine for Gas lift and gas injection on GLP platform
• 1 x 26Mw aero derivative Gas turbine for gas recovery on KPP platform
• 3 x 12Mw Light industrial Gas turbines for power generation (1 dual fuel) on NKPP and PPSP platform

TABK offshore environmental conditions are classified as being aggressive through the;
• high levels of salt & humidity,
• fog /mist
• seasonal sand storms from shamal (“Harmattan”)
• Sea spray aerosols
• Local sources of offshore generated pollutions (exhaust gas of Diesel engines and furnaces)
• Sour fuel gas with a hydrogen sulfide content of 2%

Those circumstances constitute a hard operating environment for the gas turbine
FIELD INTRODUCTION AND OPERATIONAL PARAMETERS

• operational data & maintenance records demonstrated that low performance of the air filtration system resulted in:
 • Recurrent trips due to air filter blockage (High Dp),
 • Reduced performance of axial flow compressor due to fouling and irreversible erosion
 • High failure rate (premature) of hot gas path components (< 2500FH’s on combustors, heat shields and burners)
 • Excessive maintenance schedule. (bore scope inspections every 2000 FH’s, Engine exchange every 4000 FH’s)
 • Intense offline washing regime on 4 to 6 weeks intervals. (50+ detergent washes on annual basis)

Hence reduced availability & reliability with increased profit loss and Opex.
FIELD INTRODUCTION AND OPERATIONAL PARAMETERS

As part of the rotating machinery availability & reliability road map, the option of; **low velocity high performance particle arrestance (EPA) air filtration system** was recommended as best application for TABK Turbines operating environment to resolve the reoccurring issues, but with operational Considerations to be taken:

• **Equipment weight and dimensional envelope**
 Particularly for offshore applications both can be a constraint. The original design of the platform does not always allow weight increase (structural design limitations) and/or dimensional increase due to space constraints.

<table>
<thead>
<tr>
<th>Air Filtration</th>
<th>SGT400 (Kg)</th>
<th>RB211 (Kg)</th>
<th>PGT10 (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Velocity</td>
<td>1800</td>
<td>10650</td>
<td>2030</td>
</tr>
<tr>
<td>Low Velocity</td>
<td>5940</td>
<td>14500</td>
<td>4450</td>
</tr>
<tr>
<td>Variation in Weight %</td>
<td>+330%</td>
<td>+136%</td>
<td>+219%</td>
</tr>
</tbody>
</table>
FIELD INTRODUCTION AND OPERATIONAL PARAMETERS

- **Project execution in a life plant (SIMOPS)**
 A project of this magnitude requests for a thorough preparation, planning and risk assessment to minimize any interference of the day to day operation that can lead to safety matters or production constraints.
 - Project execution within 1200 working hours with ZERO accidents
 - Approximately 8 working days per unit. (Unit S/D clubbed with routine maintenance)

- **Logistic / other challenges:**
 Typically on an offshore platform, lifting capacity is limited to the platform crane capabilities (tonnage and boom reach). The use of an (external) barge crane can overcome capacity limitations, but is expensive. Modular component build up of the filter system, adapted to platform lifting capacities was implemented. Sea transport (weather) and climate conditions (+50°C) are potential threads to planning.
EPA E12 FILTRATION

S.TAYLOR
Original high velocity filtration system

- The upstream vane separator removes the majority of large airborne water droplets, such as sea sprays, fogs, mists and large aerosols.

- The pre-filter bags (G3 classification in accordance with EN779:2012) and medium efficiency bags (M5 classification in accordance with EN779:2012) remove airborne particulates and also coalesce small aerosols that have passed through the upstream vane separator, whereby the small aerosols coalesce into larger droplets which can be captured by the downstream vane separator.

- The downstream vane separator captures the large coalesced droplets which pass through the pre-filter and medium efficiency filter bags, which are then removed from the air intake filtration system via a sealed manometric drain.
From this average air sample data, it can be seen that **96.77%** of the particles collected were **0.3μm**, and it can be calculated that **99.828%** of the airborne particles are in the **0.3μm to 1.0μm range**.
Filtration Efficiency Classifications

EN779:2012 & EN1822:2009

<table>
<thead>
<tr>
<th>Standard</th>
<th>Contaminant Type</th>
<th>Class</th>
<th>Average Arrestance</th>
<th>Average Efficiency</th>
<th>Minimum Initial Efficiency 0.4μm</th>
<th>Minimum Initial Efficiency (MPPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN-779 (2012)</td>
<td>Coarse Dust Filter</td>
<td>G1</td>
<td><65</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2</td>
<td>65<80</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td>80<90</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G4</td>
<td>>90</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fine Dust Filter</td>
<td>M5</td>
<td>--</td>
<td>40<60</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M6</td>
<td></td>
<td>60<80</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F7</td>
<td></td>
<td>80<90</td>
<td>35</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F8</td>
<td></td>
<td>90<95</td>
<td>55</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F9</td>
<td></td>
<td>>95</td>
<td>70</td>
<td>--</td>
</tr>
<tr>
<td>EN-1822 (2009)</td>
<td>Efficiency Particulate Air Filter (EPA)</td>
<td>E10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E11</td>
<td></td>
<td>--</td>
<td>--</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E12</td>
<td></td>
<td>--</td>
<td>--</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Particulate Air Filter (HEPA)</td>
<td>H13</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>99.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H14</td>
<td></td>
<td>--</td>
<td>--</td>
<td>99.995</td>
</tr>
<tr>
<td></td>
<td>Ultra Low Penetration Air Filter (ULPA)</td>
<td>U15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>99.9995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U16</td>
<td></td>
<td>--</td>
<td>--</td>
<td>99.99995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U17</td>
<td></td>
<td>--</td>
<td>--</td>
<td>99.999995</td>
</tr>
</tbody>
</table>

- **High velocity bag systems**: M5-F7
- **Traditional filtration to meet GT OEM requirements**: F8 to F9
- **Enhanced filtration**: (H)EPA E10 – E12
Filtration classification vs efficiency

<table>
<thead>
<tr>
<th>Filtration eff. class</th>
<th>Efficiency @ 0.3 micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 (high velocity)</td>
<td>30%</td>
</tr>
<tr>
<td>F9</td>
<td>60%</td>
</tr>
<tr>
<td>E10</td>
<td>97%</td>
</tr>
<tr>
<td>E12</td>
<td>99.993% (HydroCel)</td>
</tr>
</tbody>
</table>

Particle Size vs Concentration

![Particle Size vs Concentration graph](image-url)
Filtration classification ratio of air cleanliness @ 0.3 micron

<table>
<thead>
<tr>
<th>Filtration efficiency class</th>
<th>0.3 micron particles in air</th>
<th>Particles arrested</th>
<th>Particles penetrated</th>
<th>Cleanliness ratio vs M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>421,829</td>
<td>126,549</td>
<td>295,280</td>
<td>N/A</td>
</tr>
<tr>
<td>F9</td>
<td>421,829</td>
<td>253,097</td>
<td>168,732</td>
<td>X 2</td>
</tr>
<tr>
<td>E10</td>
<td>421,829</td>
<td>409,174</td>
<td>12,655</td>
<td>X 23</td>
</tr>
<tr>
<td>E12</td>
<td>421,829</td>
<td>421,534</td>
<td>295</td>
<td>X 1,000</td>
</tr>
</tbody>
</table>
Filter classification vs wash frequency

![Offline Water Wash Interval (Hours) chart]

- High Velocity
- Medium Velocity F8/F9
- Medium Velocity E10
- Low Velocity E12
Filtration classification vs GT losses

Engine Losses Post Crank Wash - F9 Classification

- Losses to Filter Loading
- Losses to Compressor Fouling
- Total Losses (incl. Higher Filter Class Dp)

% Initial Power vs Months

Engine Losses Post Crank Wash - E12 Classification

- Losses to Filter Loading
- Losses to Compressor Fouling
- Total Losses (incl. Higher Filter Class Dp)

% Initial Power vs Months

Engine Losses Post Crank Wash - E10 Classification

- Losses to Filter Loading
- Losses (Fouling)
- Total Losses (incl. Higher Filter Class Dp)

% Initial Power vs Months Post Crank Wash
Filtration classification vs GT losses

*TOTAL losses include Dp penalty for higher filtration classification i.e. E10 or E12 in lieu of F9.
The upstream vane separator removes the majority of large airborne water droplets, such as sea sprays, fogs, mists and large aerosols.

The sacrificial extended surface Dripak GT60 F6 filter bags (being a hybrid filtration stage addition for Middle East applications, temporarily installed during annual high dust concentration periods), remove sand and dust particulate that are carried from the Middle Eastern deserts out to sea by Harmattan like winds, and prevent the AmerKleen M80 G4 pre-filter coalescer pads and AAF HydroCel EPA E12 high efficiency panel filters reaching an undesirable premature terminal resistance during these cyclical high dust load conditions.

The AmerKleen M80 pre-filter pads remove airborne particulates and also coalesce small aerosols that have passed through the upstream vane separator, whereby the aerosols coalesce into larger droplets and due to gravity drain freely from the pad fibre structure.

The HydroCel EPA E12 panel filters remove small and sub-micron airborne particulates and also capture any sub-micron aerosols that may have passed through the upstream pre-filter coalescing pads.
High velocity vs (H)EPA E12 Dp

<table>
<thead>
<tr>
<th>Component</th>
<th>High Velocity</th>
<th>Low Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane Separator</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>*Temporary Sacrificial Filter</td>
<td>N/A</td>
<td>55</td>
</tr>
<tr>
<td>Pre-filter</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>High Efficiency Filter</td>
<td>310</td>
<td>N/A</td>
</tr>
<tr>
<td>EPA Filter</td>
<td>N/A</td>
<td>370</td>
</tr>
<tr>
<td>Vane Separator</td>
<td>70</td>
<td>N/A</td>
</tr>
<tr>
<td>TOTAL (Pa)</td>
<td>550</td>
<td>544</td>
</tr>
</tbody>
</table>
FIELD OUTCOMES WITH EPA E12 FILTRATION

D.ORHON
PARTICLES FOUND IN E12 FILTER AFTER 8000 HRS

● Inorganic Materials
 - Silicates (Sand)
 - Aluminium Silicates (Al₂SiO₅)
 - Calcium Sulphate (CaSO₄)
 - Sodium Sulphate (Na₂SO₄)
 - Sodium Chloride (NaCl)
 - Iron Oxide

● Aspect
 - Bound in Agglomerates
 • Micron particles size
 • sub-micron particles size

● Organic Materials
 - Insect Parts
 - Polymeric Debris
 - Large shards of wood
 - Feathers
REDUCTION OF WATER WASHES

OFF-LINE WATER WASH

LOW GRADE FILTRATION

EPA FILTRATION

Cumulative Number of Water Washes

Years

01/01/2004
01/01/2005
01/01/2006
01/01/2007
01/01/2008
01/01/2009
01/01/2010
01/01/2011
01/01/2012
01/01/2013
01/01/2014
01/01/2015
01/01/2016
AXIAL COMPRESSOR FOULING

Axial Compressor Efficiency % with Low Grade Air Filtration System

Axial Compressor Efficiency % with HEPA air filtration

M5 - 4000 Hrs

E12 - 5300 Hrs
AVAILABILITY VERSUS E12 FILTRATION

Gas Turbine Availability

EPA Filtration

Low Grade Filtration

Years

Available (%)
RELIABILITY VERSUS E12 FILTRATION

Gas Turbine Reliability

Low Grade Filtration

EPA Filtration

Years

Reliability (%)
PLANNED DOWNTIME VERSUS E12 FILTRATION

Gas Turbine Planned Downtime

Low Grade Filtration

EPA Filtration

Planned Downtime (min)

PGT10 TRA
PGT10 TRB
PGT10 TRC
RB211 GRC
SGT400 1801
SGT400 1802
SGT400 0003

Years

2010 2011 2012 2013 2014 2015
PARTS INTEGRITY VERSUS E12 FILTRATION

- Aeroderivative, Combustion Liner
- Heavy Duty, Combustion Liner

Expected Life 25 000 Hrs

<table>
<thead>
<tr>
<th>Exchange Date</th>
<th>June 2013</th>
<th>February 2014</th>
<th>November 2014</th>
<th>October 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Hours</td>
<td>3,800</td>
<td>4,500</td>
<td>6,300</td>
<td>7,300</td>
</tr>
<tr>
<td>Improvement</td>
<td>0%</td>
<td>+18%</td>
<td>+66%</td>
<td>+92%</td>
</tr>
</tbody>
</table>

Expected Life 16 000 Hrs

<table>
<thead>
<tr>
<th>Filtration</th>
<th>M5</th>
<th>E12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Hours</td>
<td>2,600</td>
<td>8,000</td>
</tr>
<tr>
<td>Improvement</td>
<td>0%</td>
<td>+210%</td>
</tr>
</tbody>
</table>

- Average life time
- GG efficiency
- Average life time KPP
- Gas compressor combustion liner
- Life time improvement

PRODUCTION SHORTFALL VERSUS E12 FILTRATION

Production Shortfall

Barrel of Oil Equivalent (BOE) per Year

Year

2009 2010 2011 2012 2013 2014

RB211 Gas Export Compressor
PGT10 Gas Injection Compressor
PGT10 Gas-lift Compressor
FOULING WITH E12 FILTRATION AFTER 8000 HRS

- E12
- Oil Staining
- Minor Erosion
- Minor Coating Loss
- Corrosion
- Airborne Contamination
- Carbon Built up
 - less than 1 micron
 - Majority around 0.1 micron close to MPPS
DISCUSSIONS

● **Hot Corrosion**
 - Despite EPA E12 air filtration, hot corrosion continues in marine environments.
 - Gas turbines are not able to reach their expected life span.
 - Alkali, such as salt, are still passing through the air filters even when they are EPA and hydrophobic.
 - Industry standards and codes do not consider the efficiency of the filter regarding salt and dissolved salt in water in humid environments.
 - The alkali filtration remains a matter of interest knowing hot corrosion eradication is still a strong driver for future Opex and Capex cuts.

● **Soot and Oil Ingestion**
 - According to this 3-year ABK experience, gas turbine cleanliness is highly sensitive to the installation location.
 - Locations which are more exposed to oil fumes and soot have an impact on axial compressor efficiency.
 - The pointing question is how oleophobic filters are and what the optimum size would be for the MPPS (Most Penetrating Particle Size) value.

● **Filter Exchange**
 - Complementary experience is necessary in order to have a good understanding of filter ageing. Additional data are needed to optimize the air filter exchanges on ABK.
Many Thanks For Your Attention

Any Question?