Gas Turbine Flexibility and Life Assessment Method

Cranfield

David Bosak 12-13 October 2016 Dr S. Dabbashi, Mr T. Isaiah, Prof P. Pilidis, Dr S. Sampath, Dr G. Di Lorenzo

www.cranfield.ac.uk

Presentation outline

- Balancing analysis
- Technical background

Balancing analysis

Cranfield UNIVERSITY

Balancing analysis

Source: bmreports.com

Cranfield Balancing analysis – operational map

Cranfield

Balancing analysis – operational map

Balancing analysis - fatigue

Example:

First

- 400 350 MW 0.045% fatigue
- Hold for 1 hour consumption
 Then
- 350 300 MW 0.033% fatigue
- Hold for 1 hour consumption

TOTAL: 0.078%

x 500 times 39% fatigue consumption

Balancing analysis - creep

Load [MW]

Example:

First

- 400 350 MW 0.004% creep
- Hold for 1 hour consumption
 Then
- 350 300 MW 0.0005% creep
- Hold for 1 hour consumption

TOTAL: 0.00455%

x 500 times 2.3% creep consumption

Cranfield

Global balancing analysis

Technical background

Crant

Gas turbine performance

Cran

Gas turbine performance

Technical background – development of operational map

GT Simulation

GT simulation

Load reduction methods

- 1. Fuel active control
- 2. Turbine entry temperature control
 - TET = const. \rightarrow Texh increase
- 3. Exhaust temperature control
 - Texh = const. \rightarrow TET decrease

Cranfield

GT engine operational map

Risks VIGV control only

- Overheating the hot section **Fuel control only**
- Flame out due to excessively lean conditions

GT simulation

non dimensional value

Inlet Pressure Drop Effect 1.02 1.02 1.00 1.01 0.98 non dimensional value 1.00 0.96 0.99 0.94 0.98 0.92 0.97 0.90 0.96 0.88 10 20 30 40 50 60 70 0 80 10 50 60 0 20 30 40 70 Outlet pressure drop (mBar) Inlet pressure drop ----- Texh (fuel control) Texh (fuel control) Efficiency (fuel control) — Power (fuel control) \rightarrow Power (fuel control) 2% Power loss ~ 1% Power loss

Outlet Pressure Drop Effect

Cranfield

GT simulation

Ambient Pressure Effect

20

25

30

35

Cran

GT engine operational map

Case scenario

- 10 mbar drop at inlet (inlet filter)
- 25 mbar drop in exhaust back pressure (HRSG)
- Ambient temperature increase from 15°C 25°C

Conclusion:

Non-dimensional mass flow should represent x-axis in GT Operational Map, not power output

Cranfield UNIVERSITY

- D
- N
- Fuel flow
- VIGV
- PO
- Tamb
- P amb
- Load exposure time
- Load change
- Fatigue life consumption
- Creep life consumption

$$\pi_1 = \frac{\dot{m}_{GT} \sqrt{T_{amb}}}{P_{amb}}$$

$$\pi_2 = \frac{TET}{T_{amb}}$$

$$\pi_4 = VIGV$$

$$\pi_3 = \frac{T_{amb}{}^{3/2} PO_{GT}}{DP_{amb}}$$

$$\pi_5 = ETA_{GT}$$

Cranfield UNIVERSITY

Cranfield

Cranfield UNIVERSITY

Non-dimensional inlet mass flow (VIGV control)

Cranfield

Technical background – development of lifing map

Cranfield UNIVERSITY

Low cycle fatigue

Cranfield

Low cycle fatigue

Part-Load Stress Strain diagram for SGT58000H

Cranfield UNIVERSITY

Low cycle fatigue

Thank you very much. Any Questions?