

8th International Gas Turbine Conference – IGTC-16

EGR and S-EGR on a Micro-Gas Turbine for Enhanced CO₂ Capture Performance

Karen N Finney

Energy 2050, University of Sheffield

with Thom Best, Andrea De Santis, Derek B Ingham and Mohamed Pourkashanian

Contents

- EPSRC Gas-FACTS and SELECT
- Turbec T100 micro-gas turbine
- Test conditions and monitoring
- Results of EGR testing at PACT on turbine parameters and emissions
- Implications for capture
- Conclusions

SELECI

Background to Gas-CCS

 Interest in gas due to high efficiencies and lower carbon intensities than coal – coupling with post-combustion carbon capture can help decarbonise the energy supply and meet stringent emissions reduction targets

• Challenges to overcome:

- ~ low CO₂ concentration/partial pressure in the flue gas
- ~ high O_2 concentrations in the flue gas
- ~ high flue gas flowrates
- Different methods to address these through research programmes to investigate ways in which to improve capture performance through gas turbine modifications

EPSRC-funded Projects

- EPSRC Gas-FACTS (EP/J020788):
 - ~ future advanced capture technology options for gas-CCS
 - ~ gas turbine modifications and advanced carbon capture
 - gas turbine options for improved CCS performance and advanced capture testing for future gas power systems
- EPSRC SELECT (EP/M001482):
 - integration, intensification, scale-up and optimisation of selective EGR CCGT systems with carbon capture
 - provide useful data to support real design improvements in flexibility to fit into the complicated energy system
 - includes system integration and process intensification, system scale-up/pilot-plant studies, system optimisation and whole systems performance assessments

Aims and Objectives

- To explore EGR/S-EGR technologies on a micro-gas turbine to increase CO₂ and limit O₂ in the flue gas
- Use of a modified Turbec T100 PH Series 1 micro-gas turbine to assess the effects of CO₂-enhanced operation across the operating envelope of the turbine, in terms of:
 - ~ mechanical impacts on the turbine
 - ~ overall efficiency
 - ~ detailed emissions analysis
- To improve capture performance and minimize reboiler duty, quantifying the increase in overall plant efficiency

Turbec T100 Gas Turbine at UKCCSRC PACT Facilities

Turbec T100 Turbine

TURBEC T100 SPECIFICATION

Compressor ratio	4.5 : 1				
Maximum fuel gas consumption	330 kW				
Turbine inlet temperature	~950°C				
Turbine outlet temperature	~645°C				
Maximum generator speed	imum generator speed 70,000 rpm				
Exhaust gas flow	0.80 kg/s				
Electrical power generation	50-100 kW				
Electrical efficiency	30%				
Thermal power generation	up to 165 kW				
Total CHP efficiency	77%				
CO ₂ concentration	1.3-1.8 vol%				
Emissions at full load*	<15 ppm/v NOx and CC				
* emissions at 15% O_2 and 15°C air inlet temperature					

PACT Test Campaigns

- Baseline test conditions: standard operation across all turndown ratios without any CO₂ addition
- CO₂-enhanced operation for the simulation of EGR and S-EGR conditions:
 - ~ variation in power output from 50-80 kW
 - variation in CO₂ injection/enhancement flowrate from 0-175 kg/hr
 - ~ EGR/S-EGR ratios of 0-356% tested

Parameters Monitored

• GT metrics:

- system temperatures including air inlet, compressor inlet/outlet, calculated TIT, TOT and exhaust gas
- ~ system pressures, including compressor outlet
- ~ engine speed
- ~ air and fuel flowrates
- Extensive emissions analysis:
 - ~ standard exhaust gas analysis (CO, CO₂, O₂)
 - UHC: including CH₄, C₂H₆, C₂H₄, C₃H₈, C₆H₁₄ and total organic carbon
 - total NO (NO and NO₂), SOx, N₂O, NH₃ and CHOH

Baseline Tests

VARIABLE		50 kW	60 kW	70 kW	80 kW	
Fuel Consump	tion (m³/hr)*					
Flue Gas Flow	rate (kg/min)	EGR and S-EGR operation				
Engine Speed (rpm)		achieved via CO ₂ injections to				
Compressor Outlet Temp (°C)		the compressor inlet altered a				
Compressor O	utlet Pressure (bar)	number of CT neremotors				
TIT (°C, calcula	nted)	number of GT parameters				
TOT (°C)		(including system temperatures,				
Flue Gas (dry basis)	O ₂ (vol%)	engine	speed, fu	iel consi	Imption	
	CO ₂ (vol%)	and thu	s turbine	efficien	cy) and	
	CO (ppm)		emiss	sions		
	Total NOx (ppm)					

temperatures

EGR Impacts – GT Parameters

engine speed and efficiency

EGR Impacts – GT Parameters

 CO_2

EGR Impacts – Emissions

Power Output kW

CO and CH₄

EGR Impacts – Emissions

NOx Emission Index

EGR Impacts – Emissions

Summary of EGR Impacts at Baseload Performance

VARIABLE		0 kg/hr	125 kg/hr
Fuel Consumption (m ³ /hr)*		22.9	23.8
Efficiency (%)		22.1	21.9
Engine Speed (rpm)		59,112	58,392
TIT (°C, calculated)		881	872
TOT (°C)		645	641
Flue Gas (dry basis)	O ₂ (vol%)	18.5	17.9
	CO ₂ (vol%)	1.4	4.9
	CO (ppm)	22.4	139
	NOx El (g/kWh)	1.63	1.43

Validated CFD Modelling

- Flame temperatures could not be measured experimentally so CFD models were employed to confirm the impact of CO₂ on the flame region using ANSYS Fluent 15.0
 - ~ a Flamelet Generated Manifold approach
 - ~ realizable k-ε
 - taking into account both conjugate and radiative heat transfer under steady-state operation
- Investigate temperatures and laminar flame speeds using 1D laminar flame calculations

Validated CFD Modelling Temperatures in the Temperature (K) combustor were reduced by ~70 K in the flame region, which would significantly limit thermal NO_x generation Laminar flames speeds baseline 4vol% CO₂ were reduced by up to 25% (1.6 m/s to 1.2 m/s at equivalence ratios around 1)

Validated CFD Modelling (LES)

• Instantaneous temperature animations:

~ from t = 0.02 s to t = 0.03 s, with combustor residence time 0.02 s

Implications for Capture

- Implications of EGR/S-EGR on a solvent-based postcombustion capture process using 30 wt% MEA¹
- Higher CO₂ concentrations in the flue gas resulted in:
 - ~ higher lean and rich CO_2 loadings
 - ~ a reduction in specific reboiler duty by $30\%^2$
 - ~ reductions in the regeneration energy and solvent sensible heat
 - ~ reductions in the desorption energy
 - ~ increases in steam generation rates in the stripper
- Considerable performance improvements can be seen by coupling EGR/S-EGR-based gas power with CCS, providing the combustion system is optimized

Conclusions

- CO₂-enhanced operation of a micro-gas turbine simulated EGR/S-EGR – up to 175 kg/hr (~350%) and the impacts on GT metrics and emissions were quantified
- CO₂ has a higher heat capacity and decreased system temperatures by up to 10°C, but even more so in the flame region, as confirmed by validated CFD models
 ~ this limited thermal NOx formation, halving the NOx EI
- It also slowed engine speeds, often by >1000 rpm, and at high EGR with low turndown ratios, produced high levels of emissions (CO/UHC) that can negatively affect capture solvents, by causing degradation

Take Home Messages

- EGR/S-EGR can increase CO₂, lower O₂ and reduce flue gas volumes to optimize post-combustion capture
- The results show that turbines at **low turndown ratios** will be significantly more impacted by EGR/S-EGR regimes and thus the recycle ratio will need to be altered to maximize both turbine and capture efficiencies over the whole operating envelope
- The generation of empirical evidence for the improvement of gas-CCS performance can be used to assist and inform the deployment of these technologies to decarbonize the energy supply and meet climate change targets

Acknowledgements

• The authors would like to:

- thank the Engineering and Physical Sciences Research Council (EPSRC) for funding this research (grants EP/J020788 and EP/M001482) and the University of Leeds Low Carbon CDT
- acknowledge that the UKCCSRC PACT Facilities, funded by the Department for Business, Energy & Industrial Strategy (BEIS) and the EPSRC, have been used for experimental and modelling work reported in this publication
- thank the UKCCSRC for making the PACT Core Facilities available for the research; the UKCCSRC is funded by the EPSRC as part of the Research Council UK Energy Programme

Department for Business, Energy & Industrial Strategy

8th International Gas Turbine Conference – IGTC-16

EGR and S-EGR on a Micro-Gas Turbine for Enhanced CO₂ Capture Performance

Karen N Finney [k.n.finney@sheffield.ac.uk] Energy 2050, University of Sheffield with Thom Best, Andrea De Santis, Derek B Ingham and Mohamed Pourkashanian

CFD Modelling – LES

Numerical settings:

- Grid: hybrid tetra-hexa mesh consisting of 15M elements (11M fluid cells + 4M solid cells)
- Conjugate heat transfer is included
- LES subgrid-scale stress model: Sigma model from Nicoud (2011) implemented in ANSYS Fluent via User Defined Function
- Chemical mechanism: GRI 3.0 (325 species, 53 reactions for natural gas combustion)
- Chemistry tabulation: Flamelet Generated Manifold employing 1D premixed freely propagating flamelets to represent the combustion process
- Subgrid-scale combustion model: presumed beta-PDF function for the mixture fraction Z and the progress variable c