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Background to Gas-CCS

e [nterest in gas due to high efficiencies and lower carbon
Intensities than coal — coupling with post-combustion
carbon capture can help decarbonise the energy supply
and meet stringent emissions reduction targets

e Challenges to overcome:
~ low CO, concentration/partial pressure in the flue gas
~ high O, concentrations in the flue gas
~ high flue gas flowrates

e Different methods to address these through research
programmes to investigate ways in which to improve
capture performance through gas turbine modifications
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SELECT

e EPSRC Gas-FACTS (EP/J020788):
~ future advanced capture technology options for gas-CCS
~ gas turbine modifications and advanced carbon capture
~ gas turbine options for improved CCS performance and advanced
capture testing for future gas power systems

e EPSRC SELECT (EP/M001482):

~ Integration, intensification, scale-up and optimisation of selective
EGR CCGT systems with carbon capture

~ provide useful data to support real design improvements in
flexibility to fit into the complicated energy system

~ Includes system integration and process intensification, system
scale-up/pilot-plant studies, system optimisation and whole
systems performance assessments
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Aims and Objectives

e To explore EGR/S-EGR technologies on a micro-gas
turbine to increase CO, and limit O, in the flue gas

e Use of a modified Turbec T100 PH Series 1 micro-gas
turbine to assess the effects of CO,-enhanced operation

across the operating envelope of the turbine, in terms of:
~ mechanical impacts on the turbine

~ overall efficiency

~ detailed emissions analysis

e To improve capture performance and minimize reboller
duty, quantifying the increase in overall plant efficiency
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Turbec T100 Gas Turbine at
UKCCSRC PACT Facilities
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Turbec T100 Turbine

Compressor ratio 45:1
Maximum fuel gas consumption 330 kW
Turbine inlet temperature ~950°C
Turbine outlet temperature ~645°C
Maximum generator speed 70,000 rpm
Exhaust gas flow 0.80 kg/s
Electrical power generation 50-100 kW
Electrical efficiency 30%
Thermal power generation up to 165 kW
Total CHP efficiency 17%
CO, concentration 1.3-1.8 vol%
Emissions at full load* <15 ppm/v NOx and CO

* emissions at 15% O, and 15°C air inlet temperature
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PACT Test Campaigns

e Baseline test conditions: standard
operation across all turndown ratios
without any CO, addition

e CO,-enhanced operation for the

simulation of EGR and S-EGR conditions:
~ variation in power output from 50-80 kW
~ variation in CO, injection/enhancement flowrate |
from 0-175 kg/hr
~ EGR/S-EGR ratios of 0-356% tested
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Parameters Monitored

e GT metrics:
~ system temperatures including air inlet,
compressor inlet/outlet, calculated TIT, TOT
and exhaust gas
~ system pressures, including compressor outlet
~ engine speed
~ air and fuel flowrates

e EXxtensive emissions analysis:
~ standard exhaust gas analysis (CO, CO,, O,)
~ UHC: including CH,, C,H,, C,H,, C;Hg, CH,,
and total organic carbon
~ total NO (NO and NO,), SOx, N,O, NH; and
CHOH
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Baseline Tests

VARIABLE 50 kW 60 kW 70 kW 80 kW
Fuel Consumption (m3/hr)*
Flue Gas Flowrate (kg/min) EGR and S-EGR operation
Engine Speed (rpm) achieved via CO, Injections to
SR e Tl Le) the compressor inlet altered a
Compressor Outlet Pressure (bar)

) number of
TIT (°C, calculated) . .
S (including system temperatures,
Flue Gas (dry O, (vol%) engine speed, fuel consumption
basis) CO, (vol%) and thus turbine efficiency) and

CO (ppm)
Total NOx (ppm)
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EGR Impacts — GT Parameters
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Engine Speed (rpm)

EGR Impacts — GT Parameters
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Carbon Dioxide Concentration (vol%)

EGR Impacts — Emissions
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EGR Impacts — Emissions
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EGR Impacts — Emissions
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Summary of EGR Impacts at
Baseload Performance

VARIABLE 0 kg/hr 125 kg/hr
Fuel Consumption (m3/hr)* 22.9 23.8
Efficiency (%) 22.1 21.9
Engine Speed (rpm) 59,112 58,392
TIT (°C, calculated) 881 872
TOT (°C) 645 641
Flue Gas (dry O, (vol%) 18.5 17.9
basis) CO, (vol%) 1.4 4.9

CO (ppm) 22.4 139

NOx EI (g/kWh) 1.63 1.43



= @UKCCS RC

j; * in University
PACT FACILITIES

Sheffield.

Validated CFD Modelling

e Flame temperatures could not be measured
experimentally so CFD models were employed to confirm
the impact of CO, on the flame region using ANSYS

Fluent 15.0
~ a Flamelet Generated Manifold approach

~ realizable k-¢
~ taking into account both conjugate and radiative heat transfer

under steady-state operation
e |nvestigate temperatures and laminar flame speeds using
1D laminar flame calculations
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Validated CFD Modelling
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e Temperatures in the
combustor were reduced
by ~70 K in the flame
region, which would
significantly limit thermal
NOXx generation

e Laminar flames speeds
were reduced by up to
25% (1.6 m/sto 1.2 m/s
at equivalence ratios
around 1)
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Validated CFD Modelling (LES)

e [nstantaneous temperature animations:
~ fromt=0.02 stot=0.03 s, with combustor residence time 0.02 s
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Implications for Capture

e |Implications of EGR/S-EGR on a solvent-based post-
combustion capture process using 30 wt% MEA1

e Higher CO, concentrations in the flue gas resulted in:
~ higher lean and rich CO, loadings
~ a reduction in specific reboiler duty by 30%?
~ reductions in the regeneration energy and solvent sensible heat
~ reductions in the desorption energy
~ Increases in steam generation rates in the stripper

e Considerable performance improvements can be seen by
coupling EGR/S-EGR-based gas power with CCS,
providing the combustion system is optimized

1 Akram, et al. (2016) Int J Greenh Gas Con 47, 137-150
2for the the increases in CO, in this paper
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Conclusions

e CO,-enhanced operation of a micro-gas turbine
simulated EGR/S-EGR — up to 175 kg/hr (~=350%) and
the impacts on GT metrics and emissions were quantified

e CO, has a higher heat capacity and decreased system
temperatures by up to 10°C, but even more so in the

flame region, as confirmed by validated CFD models
~ this limited thermal NOx formation, halving the NOx EI

e [t also slowed engine speeds, often by >1000 rpm, and at
high EGR with low turndown ratios, produced high levels
of emissions (CO/UHC) that can negatively affect capture
solvents, by causing degradation
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Take Home Messages

e EGR/S-EGR canincrease CO,, lower O, and reduce
flue gas volumes to optimize post-combustion capture

e The results show that turbines at low turndown ratios will
be significantly more impacted by EGR/S-EGR regimes
and thus the recycle ratio will need to be altered to
maximize both turbine and capture efficiencies over the
whole operating envelope

e The generation of empirical evidence for the improvement
of gas-CCS performance can be used to assist and inform
the deployment of these technologies to decarbonize
the energy supply and meet climate change targets
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CFD Modelling — LES

Case: baseline 80 kW
boundary conditions from experiments
and process modelling results

Plane 2: z =-0.09 m

Plane 1:
y=0.0m

Numerical settings:

» Grid: hybrid tetra-hexa mesh consisting of 15M elements (11M fluid cells + 4M solid cells)

« Conjugate heat transfer is included

* LES subgrid-scale stress model: Sigma model from Nicoud (2011) implemented in ANSYS
Fluent via User Defined Function

« Chemical mechanism: GRI 3.0 (325 species, 53 reactions for natural gas combustion)

» Chemistry tabulation: Flamelet Generated Manifold employing 1D premixed freely
propagating flamelets to represent the combustion process

» Subgrid-scale combustion model: presumed beta-PDF function for the mixture fraction Z and

the progress variable c



