A Novel Approach for Non-Destructive Testing of the Adhesion of Thermal Barrier Coatings

J. Manara, M. Zipf, T. Stark, M. Arduini, J. Hartmann

FH[·]W-S

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Structure

- Motivation
 - increase of the efficiency of gas turbines
 - non-destructive testing of thermal barrier coatings (TBCs)

Non-contact characterization

- infrared-optical properties
- structural properties
- adhesive properties

Conclusions and outlook

- characterization of coating and layers
- structural analysis

Motivation

Improvement of the energy efficiency of gas turbines using TBCs.

Non-destructive determination of adhesion or delamination of layer systems.

Relevant quantities:

- temperature
- heat transfer by thermal radiation (infrared-optical properties)
- structure (morphological properties)

Delamination

TBC on substrate: structural changes due to delamination

partial delamination caused by thermally grown oxide (TGO)

Transfer of thermal radiation through TBCs

PS-PVD-coating

EB-PVD-coating

Infrared-optical characterization and modelling of radiative transfer

Setup for measurement of transmittance and reflectance at ambient temperature

Blackbody Boundary Conditions (BBC)

Apparatus for measurement of transmittance and emittance at high temperatures

Blackbody Boundary Conditions (BBC)

Apparatus for measurement of transmittance and emittance at high temperatures

Characterization of alumina (AI_2O_3) with a porosity of 2 %

Characterization of alumina (Al₂O₃) with a porosity of 2 %

Characterization of Radiative Transfer

Freestanding TBC: partially yttria stabilized zirconia (PYSZ)

Delamination of TBC

Partial delamination:

- change of the morphology
- change of the radiative transfer
- change of the temperature gradient

Determination of Temperature Gradient

Change of the temperature gradient due to delamination:

sapphire on a substrate: without gap and with gap

Determination of Temperature Gradient

Change of the temperature gradient due to delamination:

sapphire on a substrate: without gap and with gap

Determination of Temperature Gradient

Change of the temperature gradient due to delamination:

sapphire on a substrate: without gap and with gap

Conclusions and Outlook

Characterization of free-standing layer

- infrared-optical characterization at high temperatures
- determination of structure and morphology
- modelling of the radiative transfer and radiative thermal conductivity

Analysis of coatings and layer systems

- non-destructive testing at high temperatures
- possibility of detecting delamination of TBCs

Outlook

- correlations need to be further investigated and thoroughly quantified
- further work will be done on testing adhesion of TBCs

© ZAE Bayern

Thank you!

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

