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ABSTRACT 

This paper presents a novel approach to support 

engineers in the Remote Diagnostic Centers developed at 

Siemens. An innovative combination of Deep Learning
1
 

and Natural Language Processing (NLP)
2
 technologies 

allows us to harness both the vast amount of the engineers’ 

diagnostic knowledge as well as information about the 

current turbine status derived from the available sensors. 

This approach is embedded into an overall systematic 

workflow building on physics-based, rule-based and data-

driven methods. Based on results from a recent R&D 

project at Siemens Remote Diagnostics Services, we prove 

that this framework successfully supports engineers in 

identifying relevant information, thereby significantly 

reducing trouble shooting time and increasing both 

technical responsiveness capability and capacity. 

INTRODUCTION 

Both power generation and oil and gas domains 

operate turbo-machinery plants using complex rotating 

equipment. To keep up with the technological advances, 

the turbo-machinery industry aims to integrate 

engineering, manufacturing, servicing and maintenance of 

their plants into a single technological eco-system. The 

classical approaches are the utilization of condition 

monitoring services and diagnostic solutions, as well as the 

integration of design models and simulation results into the 

plant operations. This results in better availability and 

                              
1 Deep Learning denotes a class of machine learning 

methods that use multiple model layers to discover high-

level abstractions of the input data and use it for 

analytical tasks. Current approaches are often based on the 

neural network paradigm. 
2 Natural Language Processing is a field of Artificial 

Intelligence focusing on the processing of human language 

by computers. For this paper, we focus on the aspect of 

Natural Language Understanding, i.e. the interpretation of 

human-generated content (here: text) by computers. 

reliability of plant systems, improved operations, lower 

maintenance cost, and higher safety.  

Remote monitoring and diagnostics of rotating 

equipment provided directly by the original equipment 

manufacturer (OEM) are indispensable in practice, and a 

focus of active research in academia. Recently, there has 

been an increased demand for a systematic approach to 

plant process safety, increased reliability and availability, 

lower maintenance cost, and continuous awareness about 

the equipment health status. This poses a challenge to the 

existing tool landscape, which typically relies on the 

adaptation of condition monitoring solutions to expert 

systems. Specifically, fault detection, fault isolation, 

failure mechanism definition and diagnosis definition as 

part of the systematic diagnostics are essential to support 

OEM engineers in their decision making process, up to and 

including the corrective action recommendation. However, 

due to the technical complexity caused by the large 

number of subsystems and process flows, diagnosis for 

industrial gas turbines is non-trivial, and requires the 

multi-disciplinary expertise of various engineers from 

domains such as system mechanics, aerodynamics, and 

thermodynamics, to name but a few. 

Specifically, root-cause analysis as part of failure 

analysis within system engineering & diagnostics is an 

indispensable feature of the design and maintenance phase. 

It allows identification of faults based on their causes and 

effects that propagate at different system levels. 

Consequently, a model-based approach to failure analysis 

for industrial gas turbine applications is used to realize an 

efficient system analysis. Over the last decades, a natural 

evolution of the systematic approach can be observed, 

which can be summarized as an extension of the original 

(1) physics-based methods by (2) rule-based systems
3
, and 

over the last years additionally utilization of the (3) data-

                              
3 Systems utilizing (typically hand-crafted) IF-THEN 

rules to derive new information from known facts. 
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driven methods
4
 for many-dimensional operational 

characteristics. This three step approach based on physics, 

rules and machine learning enables the formalization of 

various qualitative models of key turbine components, 

which are highly error-prone, together with their potential 

failure mode descriptions, and their impact at different 

system levels. This information is collected over decades 

in a single, large knowledge base and regularly processed 

(semi-)automatically using various available reasoning 

engines.  

Thus, there is an urgent need to utilize all available 

historical operational data of the rotating equipment to 

leverage the hidden knowledge. In order to make this 

feasible we need to address all aspects of the problem: (1) 

sensor data from the turbine instrumentation, (2) sequences 

of events from control systems, complemented by (3) 

reports (i.e. textual information) which can be understood 

as annotations of the raw data. This approach constitutes 

an extension of (already) existing hybrid diagnostic 

systems in order to fulfill current requirements in both 

failure detection and isolation for industrial systems. 

STATE OF THE ART 

As of today, diagnostic systems typically make use of 

at least four types of knowledge (see Figure 1):  

1. Dedicated calculations for simple data analysis 

tasks including, but not limited to: data quality 

and sensor checks, data cleaning, transformations 

such as FFT, KPI calculations, prediction, alarm 

management, and simulations. 

                              
4 Methods for automatically discovering dependencies 

from historical data, often also called machine learning. 

2. Engineering knowledge about physics-related 

processes formalized on the basis of simulations 

performed during design and manufacturing (e.g. 

thermo-dynamical calculations for performance 

monitoring). 

3. Operational experience about incorrect or non-

desired behavior under certain scenarios 

formalized as IF-THEN rules (i.e. fault models, 

either declarative or hard coded, including so-

called complex event processing, or CEP
5
). 

4. Baseline models that describe the normal state of 

the system and allow identification of deviations, 

typically formalized with the help of various 

machine learning methods such as Neural 

Networks and Support Vector Machines
6
. 

In addition, there have been various attempts to utilize 

case-based reasoning (Kolodner, 2014), providing a 

similarity function over the multi-dimensional space of 

sensor data. 

However, all such systems fail to include the experience 

stored in a semi-structured format, for instance in 

experience reports or service tickets, and to make it 

available for automated decision support. Such experience 

                              
5 CEP is an extension of rule-based systems taking time 

into account. This allows detecting temporal pattern 

characterizing, for instance, harmful processes. 
6 Neural Networks (NNs) and Support Vector Machines 

(SVMs) are two examples of so-called supervised machine 

learning methods. Based on large sets of historical data 

together with so-called labels (that tell the algorithm 

whether the corresponding data denotes a normal or deviant 

state), such models allow to automatically classify new 

data into these groups to assess the current status. 

Figure 1: Knowledge types and processing methods for efficient remote diagnostics 



 3   

summarizes past situations with their characteristics, 

decisions taken, and (ideally) documented effects of the 

related actions. Such information is very valuable for 

several reasons: Firstly, it often comes “for free” as an 

artifact generated, for instance, in the maintenance process. 

Secondly, experts often find it easier to express their 

experience in natural language than in strictly deterministic 

rules. And thirdly, while data-driven approaches often need 

to be adapted to each specific device, the information 

expressed in such texts is generally more abstract, 

therefore easing generalization from one device to others 

of the same family. The proposed in the paper approach to 

decision support for remote diagnostics of gas turbines, 

which takes into account both operational and human-

generated content, can be seen as a specific type of case-

based reasoning (Korbicz et al. 2002) based on a 

combination of Deep Learning and Natural Language 

Processing technologies. 

RELATED WORK 

In the context of rotating equipment engineering, gas 

turbines move products such as gas for power generation 

or mechanical drive applications. In general, every unit of 

a plant consists of a driven machine, a driver, and a 

transmission device and is supported by auxiliary 

equipment as discussed by Forsthoffer (2011). Figure 2 

shows the topology of an industrial plant. 

 

 

Figure 2: Industrial plant landscape 

All equipment mentioned above can be classified 

further and can have different configurations. For example: 

drivers can be classified as steam turbines, gas turbines, 

motors (induction, synchronous or vari-speed) or engines 

(internal combustion, diesel or gas). The key is to 

understand the functionality of the equipment’s critical 

components in order to effectively monitor and maximize 

plant safety and reliability. Reliability is commonly 

defined as  the operating time of the equipment per year. It 

is a measure of the equipment unit performing its specified 

function without a forced (unscheduled) outage for a given 

period of time (Forsthoffer, 2011). In case of an outage, the 

loss of revenue can exceed one million U.S. Dollars a day 

according to Forsthoffer (2011). An outage is usually 

caused by the shutdown of a critical component. Many 

leading companies including our industrial partners 

recognize the critical importance of reliability management 

and adopt the following strategies (Ceschini and Saccardi, 

2002): 

1. Involve the end-user in the specification, design and 

installation phase of the plant; 

2. Determine the life span of the plant and its 

components, which is extremely long compared to the 

development phase; 

3. Analyze the instrumentation and location of the plant 

since these directly impact the equipment’s reliability; 

4. Focus on the design and installation due to the 

substantial influence on the maintenance 

requirements, its cost and the availability of a 

particular piece of machinery. 

One of the best systematic overviews of all crucial 

diagnostic components of the overall ecosystem is given 

by Korbicz et al. (2002). In addition, an extensive 

summary of the existing techniques and methods for 

industrial diagnosis is provided in Vachtsevanos et al. 

(2006). Both suggest the usage of a systematic approach 

taking into account the nature of the monitored system, 

interrelations of the subsystems and their components, 

instruments and sensors, as well as all available 

engineering tools and various methods. There is no silver 

bullet in mathematics or machine learning to address every 

small aspect with one method. Hence the overall 

diagnostic ecosystem will be always based on hybrid 

approach, involving five major steps: (1) basic calculations 

on available system parameters, (2) physics-based 

calculations of the relevant processes of a system, (3) rule-

based methods to support a knowledge-driven approach, 

(4) data-driven techniques to find complex correlations in 

the data, and (5) case-based reasoning to adapt existing 

solutions to known issues from the past. 

Points (3) and (4) of this list are described to a certain 

extent in the papers by Mehdi et al. (2015), Hubauer et. al. 

(2013) and De Haan & Roshchin (2012). They identify the 

current issues of the standard approach and propose 

extensions to the diagnostic landscape at the Remote 

Diagnostic Center at Siemens. 

PROPOSED APPROACH 

In contrast to the solutions presented in the preceding 

section, our novel approach combines machine-generated 

and human-generated content in order to support engineers 

in the Siemens Power Generation Remote Diagnostics 

Center (RDC). More concretely, our solution utilizes 

similarity-based reasoning over textual case descriptions, 

sensor data and sequence-of-events (SoE) data to present 

the technician with an ordered list of most similar 

historical cases. By inspecting these cases, the engineer is 

quickly guided to a solution for his problem. Figure 3 

depicts the conceptual approach of our solution, with input 

/ output depicted in grey and processing steps in white. In 

the following sections, we provide insight into the 

processing flows for machine data as well as for human-

generated content, and show how the information extracted 

from both sources is combined into a single, consistent 

answer presented to the end user. 
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Figure 3: Functional overview of the proposed solution 

Processing of human-generated content 

In our solution, the maintenance tickets created (and 

updated) by a remote service engineer during the analysis 

of a new case constitute one of the major sources of 

information. This data contains at least the following 

information: 

 The unique identifier of the affected turbine, 

 a short title of the case, summarizing the problem 

at hand in a few words (in English language), 

 a longer case description detailing the findings 

and interpretations of the engineer(s) (also in 

English language), 

 information on the date and time the problem 

occurred (typically close to the creation date of 

the ticket). 

The textual information is processed by an automated 

feature extraction pipeline. In a nutshell, we first extract 

relevant keywords from the texts, which are in turn 

normalized by applying standard natural language 

processing, or NLP (Winograd, 1972) technologies such as 

stemming. In a second step, our pipeline extracts 

component-symptom relationships from the text. This is 

done by means of a domain-specific grammar, which has 

been developed jointly by NLP and subject matter experts. 

By using a grammar-based approach in addition to 

established keyword-based methods, our solution is robust 

to misspellings and alternative formulations since it 

captures the inherent semantics of the text in addition to its 

written, symbolic representation. 

The numeric NLP feature vector of a case (denoted in 

the figure by fH) is then derived by probabilistic 

assignment of the case to a pre-trained cluster model, i.e. 

entry i of the feature vector is the probability of the case 

belonging to cluster i. The dimensionality of the NLP 

feature vector is therefore given by the number of clusters 

of the model, currently set to 50. This cluster model has 

been trained based on a corpus of historic cases processed 

by our feature extraction pipeline. In an iterative process 

involving feedback by domain experts, we have optimized 

this model to yield clusters with consistent underlying 

causes. This way, the experts’ notion of similarity of cases 

is captured in the clustering model and applied to new 

cases automatically. 

Processing of machine data 

Processing human-generated content as presented in 

the previous section elegantly integrates expert knowledge 

and human intuition into the analysis process. However, 

there are a number of reasons for us not to rely solely on 

this information source: 

1. We want to provide our support functionality as early 

as possible in the diagnostic process, without requiring 

the user to do intensive analyses as a prerequisite. 

2. We want the tool to also provide support in cases of 

hitherto unseen failure classes (or unforeseen ways of 

describing a situation) for which no conclusive 

clusters exist. 

3. Diagnostic engineers new to the job (or a specific 

family of turbines) shall be supported even if they are 

confronted with cases they would not know how to 

tackle otherwise. 

Therefore, we integrated a second processing pipeline 

that works directly on the sensor and sequence-of-events 

(SoE) data provided by the control system of the turbine. 

This is exactly the same data that a human engineer would 

inspect when going through the diagnostic process without 

any tool support. This part of our solution can therefore be 

understood to mimic the analysis process of the expert. 

Different from a human expert, however, larger amounts of 

data (i.e. more sensors, more events, and/ or larger time 

slices) can be taken into account due to the sheer 

computational power available. 

Based on the feedback from subject matter experts, we 

currently use data from the 24 hours prior to the incident 

for this analysis (the time being taken from the ticket 

contents described previously). To compute features and 

compress those 24 hours of data into the machine data 

feature vector fM, we developed a method that combines 

event counts and sensor values over the time domain by 

means of so-called deep learning technologies (more 

concretely, a deep convolutional neural network, or CNN, 

trained over historical data). The internal layers of this 

network can be understood to conduct a stepwise 

compression of the information taking into account the 

temporal ordering of sensor and event data, as depicted 

graphically in Figure 4. The result of this step is a vector of 

length 1000. For more information on CNNs and Deep 

Learning, the interested reader is referred to (Krizhevsky, 

Sutskever and Hinton. 2012), (LeCun and Bengio, 1995), 

and (Sainath, 2013). 

 

Figure 4: CNN approach for feature vector generation 
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Ranking and case retrieval 

As shown in the right part of Figure 3, the two feature 

vectors fH and fM computed in the steps described above 

provide the basis for the ranking and retrieval of the most 

relevant historic cases. This ranking is done by computing 

the cosine-similarity of the (combined feature vector of 

the) newly created case to (the combined feature vector of) 

each historic case. To maximize flexibility with respect to 

the dimensionality of the two feature vector components, 

we first compute the similarity of the two components 

independently, giving us a “text similarity” and a “machine 

data similarity” value for each pair of cases. We then 

combine these two values using a machine learning model 

trained on the historic cases, resulting in a single similarity 

value (ranging between 0.0 and 1.0) for each pair of cases. 

The 100 historic cases most similar to the new case entered 

by the user are then shown to the diagnostic engineer in an 

ordered list, with a graphical indication of the degree of 

similarity. 

REALIZATION AND EVALUATION RESULTS 

We have implemented the proposed solution in a tool 

called “ADS” (Advanced Diagnostic System) which offers 

the above-described functionality to remote diagnostics 

engineers via a web interface. Our implementation is 

explicitly designed for an incremental diagnostics 

approach: The user enters initial findings into the case 

description field, gets an initial list of results, uses 

information taken from these cases to conduct deeper 

analyses and to update his case, issues the query again, etc 

– until he arrives at an acceptable solution. The web-based 

graphical user interface is depicted in Figure 5. 

 

 

Figure 5: UI of the ADS system 

Early during implementation of the developed system, we 

conducted an evaluation with selected key users as 

follows: For a total of 28 test cases chosen randomly from 

the historic case base, we provided the experts with the top 

10 answers returned by the current version of our solution. 

The experts then judged the number of solutions in the list, 

and the number of “helpful answers” defined to be either a 

solution or guiding to find one. The evaluation results 

shown in Figure 6 highlight the outstanding potential of 

the ADS tool, which returned a minimum of four correct 

solutions for all test cases. Moreover, in over 50% of the 

evaluated cases at least 7 out of the 10 proposed answers 

were considered relevant by experts.  

 

 

Figure 6: Preliminary evaluation results 

CONCLUSION AND FUTURE WORK 

We conclude the preliminary evaluation of our 

approach by emphasizing that the deep learning model 

including sensor data had not yet finished training at the 

time of testing. However, even the reduced approach based 

on textual case descriptions and SoE data yielded high 

quality results; the more powerful approach including 

sensor data is expected to result in a further major 

improvement of the quality of the proposed cases. We are 

currently working on an updated evaluation to quantify the 

additional quality boost. 

Recently, the growth of computational power has 

given new impetus to autonomous decision making 

methods from the area of artificial intelligence. These 

developments made available new methods and tools to 

tackle the challenges outlined at the beginning of this 

paper. We have presented such a method: a novel Case 

Based Reasoning method combining Natural Language 

Processing and Deep Learning that provides high-quality 

recommendations in an interactive diagnostics scenario. 

The unique combination of machine data and human-

generated content provides engineers in a remote 

diagnostic center with highly relevant (at least 4 solutions 

out of 10 suggestions) historic cases, given a new issue. 

In the future, our solution will multiply the number of 

cases an engineer is able to handle in a day, thereby 
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increasing efficiency of remote services tremendously. To 

this end, we are currently working on integrating the 

solution into the engineers’ standard tools. In parallel, we 

plan to investigate more closely the aspects of sensor data 

and the effect of integrating it into the recommendation 

process as well. 
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