

Sustainable and Novel fuel cell applications for Island Energy Systems

P. Grammelis, A. Nikolopoulos, K. Sfetsioris, <u>K. Atsonios</u>, K. Manou

Contact: +30 211 1069 500, Fax: +30 211 1069 501,

e-mails: grammelis@certh.gr, atsonios@certh.gr

Contents

- 1. Motivation
- 2. Concept idea
- 3. Members of the Consortium
- 4. Project details

Concept idea

Members of the

details

Project

Great interest of EU in energy islands/ geographical islands

CERTH/CPERI participates in the H2020 project **SMart IsLand Energy systems – SMILE**, that investigates innovative technological solutions for smart grids development in islands (info at: http://www.h2020smile.eu/)

Greek islands: special challenges to overcome

Power production synthesis during the annual peak power demand period (August) in a Greek island

Development of LNG based technologies integrated with energy storage solutions

Concept idea

Members of the

Project details

- Dependence on oil fuel
- High electricity cost
- High CO₂ emissions
- Technical difficulties for RES development

- Dependence on NG
- High efficient electricity production
- Low CO₂ emissions

- Sustainable concept
- No fossil fuel dependence
- Zero CO₂ emissions

Concept idea

Members of the

Consortium

Project

SOCs: Solid Oxide Cells

Necessary during start-up until the SOFC reaches operability.

Overall hybrid cycle **efficiency** can be **>70%.**

Hybrid SOFC-GT

SOFC

Fuel Cell Fuel → Electricity

Electrochemical oxidization of fuel without combustion leading to ultra-high efficiencies (up to 60%)

Low emissions due to the electrochemical reaction.

Variety in fuels: NG, LNG, H₂, biogas

Possibility to **assembly in power plants** from micro-scale (<1 kW) to large-scale (>10 MW).

Excess heat utilization for **cogeneration purposes** (space heating, DHW, district heating, stream, desalination, etc).

exhaust gases utilization at a bottomed thermodynamic cycle (e.g. Rankine, Brayton)

→ hybrid system

Electrolyzer Cell Electricity → Fuel

SOEC

Operates at higher temperatures than other electrolyzers (Alkaline & PEM) and consume much less electricity thank to superior energy conversion efficiency

Direct electrolyzing CO₂. Syngas product from co-electrolysis of H₂O & CO₂

Chemical energy storage/ carrier

Reversible operation

Members of the

Consortium

Project

Centre for Research & Technology Hellas (CERTH)

- One of the largest research centres in Greece, founded in 2000
- Legal entity governed by private law with non-profit status
- 1.000 competitive research programs (total budget over 423 M€).
- Employ more than 600 people.

Public Power Corporation (PPC)

- The major electricity utility in Greece
- Installed capacity about 12 Gwe (more than 80% of total)
- Portfolio: Lignite, Oil, Natural gas, Hydroelectric, Wind, Solar

Gas-und Warme-Institut Essen e.V.

Applied Science Institute – Gas and Heat Technology Applications

Universität Duisburg-Essen

Extensive expertise in the fields of power generation and energy recovery from waste, residues and biomass

Mitsubishi Hitachi Power Systems Europe GmbH (MHPSE)

- Leading Power Plant Manufacturer
- Long experience in EU research and innovation projects

DUISBURG

Concept idea

Members of the

Project details

Project Title: SUstainable and Novel fuel cell applications for Island Energy Systems (SUNIES)

Duration: 30 months **Budget**: 894,000 €

Funded by: NSRF - Bilateral Research and Innovation Cooperation Greece-Germany

Project main objectives

- Proving the operability of a Hybrid-SOFC-System prototype (250 kWe) under specific fuel and load conditions
- Development of new SOFC concepts for island applications
 - highly flexible "base concept" composed of a SOFC +Micro-GT (MGT)
 - highest efficiency "Triple Cycle Concept" (SOFC+MGT+ST)
- Feasibility assessment of a reversible SOFC/SOEC concept on medium to large scale island applications

Project main activities

- Screening and determination of boundary conditions and selection of two Greek island cases (PPC, CERTH)
- Testing of the 250 kWe SOFC Hybrid System (GWI, MHPS)
 - performance & flexibility (electrical-, thermal output, efficiency, stability, degradation) by using different fuels (Biogas, different NG compositions, NH3 etc.) under different boundary conditions
- Steady state and dynamic modeling simulations (LUAT, CERTH)
- Business plans and Roadmap (PPC, CERTH)

Thank you for your attention!

Acknowledgements

The participation in ETN AGM & Workshop is financially supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 731249 (Smart Islands Energy Systems - SMILE)